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Abstract

The orbit of a chaotic system is irregular, aperiodic, unpredictable, and sensitive to initial
conditions. These characteristics coincide with the confusion and diffusion properties in
cryptography. In recent years, chaotic systems have been studied for secure communica-
tions.

However, when a chaotic system is digitalized, it results in some unexpected behaviors
due to limited precision. It is known as dynamical degradation. An obvious phenomenon
is that an orbit enters a cycle with unpredictable length. The orbit with short cycle length
has poor quality of randomness because it can be easily analyzed from statistical point of
view.

In this dissertation, we focus on improving quality of randomness for digitalized logistic
maps. New modified logistic map-and-techniques are proposed to improve the degree of
complexity for secure communications and pseudo random number generation. The main
achievements of this dissertation are as follows.

First, we propose a Robust.Logistic'Map: (RLM) 'which has a larger parameter space
than classical logistic map. Moreover; there areuradowswith short period-length in the
parameter space. Based on RLM;a Robust Hyper-Chaotic System (RHCS) is constructed
for secure-communication systems with large parameter space.

Second, we propose a Variational Logistic Map (VLM) to significantly increase the
throughout and quality of randomness of RLM. Moreover, a Multiple Variational Logistic
Map (MVLM) is proposed for fast chaotic sequence generator. Because of the regular
architecture of MVLM, it is easy to scale up the system degree to provide long output
sequence with high degree of complexity and large key space for secure communications.

Pseudo Random Number Generators (PRNGSs) are often an important component in se-
cure communications. In the third part of this dissertation, we propose a PRNG based on

a Digitalized Modified Logistic Map (DMLM). Two techniques, constant parameter selec-

Vi



tion and output scrambling are employed to reduce the computation cost and to increase the
complexity of the PRNG. Compared to previous digitalized chaotic systems based PRNGs,
our DMLM-PRNG has better quality of randomness and lower hardware cost.

Each of our system mentioned above has been implemented. Comparisons between
our systems and previous work are conducted in terms of hardware cost and throughput.

Moreover, the quality of randomness is demonstrated by statistical analysis.

Vil



Chapter 1

Overview

Modern communication frameworks, such as Internet and mobile-phone networks, have
greatly increased the activities and possibilities of communications. With increasing com-
munication activities, the security issues become more and more important. Thus, a lot of
research activities focus on cryptographictechniques to provide secure communications.

A general secure-communication scheme'is shown in Figure 1.1. In this scheme, mes-
sage is transmitted by tligansmitterthrough channels aft&ource Encodindg=ncryption
and Channel Encoding Modulation The Receiverrecovers the message by reversing
these steps.

Basically, the security of the.communication is provided by the encryption of the mes-
sage. The encryption system scrambles the message so that it is unreadable by the non-
authorized opponent. Some secret informatikey, is shared by théransmitterand
the Receiverfor encryption and decryption progress. It should be unknown to the non-
authorized opponent. Depending on the management strategy of keys, crypto (encryption
and decryption) systems are typically cataloged into two typesytmenetridas known as
secret-keycrypto systems and tresymmetridas known apublic-key crypto systems.

In the symmetric crypto system, such as Data Encryption Standard (DES) and Ad-
vanced Encryption Standard (AES), the message is encrypted and decrypted with the same

key shared by the transmitter and the receiver, while in the asymmetric crypto system, such

1
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Figure 1.1: General secure-communication scheme.

as Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC), the message

is encrypted by the transmitter with the receiver’s public key. The receiver will decrypt
the message by the receiver’s private key which-is unknown to others. As compared to a
asymmetric crypto system, a symmetric one usually has lower computation cost and higher
throughput, but lower security level: in a practical.embodiment, before message transmis-
sion, a asymmetric crypto system-can be used to exchange a key, then a symmetric crypto
system uses the exchanged key to-transmit'the-message with high throughput. Please refer
to chapters 3 and 9 in [18] for the detailed.descriptions. In this research, we focus on the
secure communications which are based on symmetric crypto systems.

An orbit generated by a chaotic system is irregular, aperiodic, unpredictable and sensi-
tive to initial conditions [1]. These characteristics coincide with the confusion and diffusion
properties in cryptography. Thus, since 1990s, chaotic systems have been used in secure
communications. These chaotic-cryto systems can be divided into two forms: analog and
digital. [2-15].

The analog secure-communication is based on chaos synchronization. The main idea is

to mask messages by chaotic signals, then the messages can be recovered by a synchronized



chaotic system [16]. The digital secure-communication is based on the chaos theory. Itis
based on the random-like behavior of the orbit generated iteratively by a chaotic system [2].

Because the orbit generated by a digital chaotic map is deterministic (computed by
computers) and sensitive to initial conditions (parameters and initial values), the pseudo
random number generator (PRNG) is a natural application of digital chaotic maps. PRNGs
are widely used in many applications, such as numerical analysis, integrated circuit testing,
computer games. Itis also an important component in secure communications [13, 14, 17].

However, chaotic behaviors become unpredictable when a chaotic system is digitalized.
The dynamic degradation is caused by the limited precision used to compute the orbit.
The randomness quality of the output is greatly reduced, and the system behavior can be
easily analyzed. Hence, a lot of researchers address the problem and proposed methods
to improve the output complexity of digital chaotic systems. [11]. Besides complexity
of the output, efficiency is also an important issue for a chaos-based ciphers. One may
increase the level of complexity by applying complicated chaotic systems, however, it is
non-practical because of large computation cost.

In this dissertation, we will propose. digital modified logistic maps and techniques to
increase the quality of randomness'with-good compromise between security and efficiency.
The proposed systems are suitable for digital secure communications and PRNGs. In the
following sections, we will introduce previous work and the organization of this disserta-

tion.

1.1 Previous Work

In analog chaotic secure-communications, chaotic signals are used as masking streams to
carry information which can be recovered by the chaotic synchronization behavior between
the transmitter and the receiver [19]. It is based on the concept that a chaotic system (drive

system) can be synchronized with a separate chaotic system (response system), provided



that the conditional Lyapunov exponents of the difference equations between the drive and
response systems are all negative proposed by Pecora and Carrol [16].

Besides, digital chaotic systems are also widely used for generating digital signals for
security systems [2, 3,5, 6,12, 14, 20]. Among others, Matthews [2] proposed the first
chaotic-crypto system based on a logistic map implemented on the computer. At the same
time, Wheeler [21] commented that Matthews’ system can indeed generate unpredictable
sequences. However, with short precision, the system will have a small number of total
states.

When chaotic systems are digitalized, it becomes "pseudo-chaotic” because the dy-
namic behavior is reduced. For example, the cycle length of a orbit is short. Because of the
limited precision, there has truncation error for each computation. Two points of the orbit
with a difference which is smaller than the truncation error will become the same one after
truncating. The short output cycle leads to non-uniform output distribution. In this case,
the output is easy to be analyzed-and attacked by -enumerating all states of output.

Wheeler [21] suggested that digital chaotic system-implemented with more digits can
solve the problem of short outputcycle length.Also, multi-dimensional system constructed
by coupled maps [8, 13] and timing-based reseeding method [12] are also proposed to
increase the complexity and output cycle-length.

Although using higher precision and coupled maps can increase the output cycle length
and complexity, it still can not solve another issue that is the small parameter space for
chaotic maps.Alvarez [22] pointed out that the usable region of parameter values is a
weakness of the discrete-time chaotic system. The chaotic behavior of the system is de-
pendent on the parameters. Unfortunately, all parameters are not equally strong. Some of
them will result inwindows Note that here a&vindowis defined as the chaotic orbit of a
non-linear system visualized as periodic on computers (see e.g. [1, p. 356]). The length of

orbit generated by the parameterimdowis fixed no matter how large the precision is



increased to compute the orbit. The remaining parameter space may easily be attacked by
brute-force enumeration method because of smaller parameter space. For example, previ-
ous systems using logistic maps work only when parameterequal or close to 4 [12].
This constraint makes the key space of a security system smaller than applications require.
Because of low computation cost, a logistic map, serves as popular map to generate
chaotic sequence for security systems [5, 9, 12]. In this dissertation, we will propose mod-
ified digital logistic maps for secure communications and PRNGs. Compared to a classi-
cal logistic map, our maps have larger parameter space and better quality of randomness.
Moreover, techniques for increasing the cycle length is proposed for our chaotic systems.
With low computation cost and good quality of randomness, proposed systems are suitable
for secure communications and PRNGs. The overview of this dissertation is described in

the next section.

1.2 Dissertation Overview

In Chapter 2, from our review of previous work; we deduce that to effectively use chaotic
maps in digital encryption, a-system must meet the following three criteria. First, the length
of digital precision must be long enough to!prevent the system from being attacked by state
enumeration. Second, the parameter space must be large enough for practical use. Finally,
the re-construction of the chaotic system must be infeasible using current computational
technology.

To solve these problems, we propose a Robust Hyper-Chaotic Encryption-Decryption
System (RHCEDS) for secure communications. An RHCEDS consists of two Robust
Hyper-Chaotic Systems (RHCS) for the transmitter and the receiver. An RHCS is con-
structed by coupling robust logistic chaotic maps [23], one carrier map and several hidden
maps, so that it has more than one positive Lyapunov exponent. Thus, the RHCS has a

higher degree of complexity than traditional discrete-time secure-communication systems



because the former uses multiple coupled chaotic maps rather than a single one [24]. The
new proposed system RHCEDS has a large parameter space which grows along with system
precision. Hence, the re-construction of our system is not feasible by current computational

technology. The statistical analysis of the RHCS shows that the system has good quality of

randomness.

In Chapter 3, we will propose a Variational Logistic Map (VLM) with un-restricted
parameter space, and can be implemented at lower cost as compared with classical logistic
map. Then, we design a Multi-VLM (MVLM) system constructed by VLMs to have output
sequence with higher degree of complexity and larger key space than a single VLM. An
MVLM constructed by four 32-bit VLMs can generate sequence with cycle length more
than 2!2® with a 128-bit external key. We demonstrate that MVLM can generate output
sequence with well quality of randomness with higher throughput and lower hardware cost
as compared to previous work.

In Chapter 4, a nonlinear, Digitalized Modified-Logistic Map based Pseudo Random
Number Generator (DMLM-PRNG) is proposed for randomness enhancement. Two tech-
niques, constant parameter selection and output-sequence scrambling are employed to re-
duce the computation cost without-sacrificingthe complexity of output sequence. Statisti-
cal test results show that with only one-multiplication, DMLM-PRNG passes all cases in
SP800-22. Moreover, it passes most of caseSrimsh one of the test suite of TesuUOL.
When compared to solutions based on digitized pseudo-chaotic maps previously proposed
in the literature, in terms of randomness quality, our system is as good as a Rényi-map
based PRNG and better than a logistic-map based PRNG. Moreover, compared to solu-
tions based on Rényi-map based PRNG, DMLM-PRNG is better scalable to high digital
resolutions with reasonable area overhead.

Finally, the conclusion and future work will be given in Chapter 5.



Chapter 2

Digital Secure-Communications Using
Robust Hyper-Chaotic Systems

In this chapter, we propose a robust hyper-chaotic system that is suitable for digital secure-
communications. The system consists of many coupled robust logistic maps that form a
hyper-chaotic system. It has a higher.degree-of complexity than traditional discrete-time
secure-communication systems that use only 'a.single map. Moreover, the system has a
very large parameter space which.grows.along with system precision. Hence, attacking
the system by the method of map:ré-construction in current computation technology is
not feasible. Statistical analysis.shows that the system achieves very high security level.
Finally, two hardware architectures (muttiple-cycle and pipelined) are proposed for area
and performance optimization, respectively.

The rest of this chapter is organized as follows. In Section 2.1, our target system Ro-
bust Hyper-Chaotic Systems (RHCS) and a Encryption/Decryption scheme Robust Hyper-
Chaotic Encryption-Decryption System (RHCEDS) will be presented. In Section 2.2, the
cryptanalysis will show that our system is suitable for secure communications. In Sec-
tion 2.3, we present the hardware implementation to demonstrate our RHCEDS. Finally,

summary is given in Section 2.4.
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Figure 2.1: The architecture of RHCEDS.

2.1 Robust Hyper-Chaotic Encryption-Decryption System

The crypto system is defined as communications between the Encryption layer and the
Decryption layer in a general secure-communication scheme. An architecture of crypto
system is shown in Figure 2.1. Given an initial vectdf) = [x(lo), . “717%0)]T’ para-
meters including am-by-n stochastic matriXC =. [¢;;] and a chaotic parameter vector
r=[y,...,7]", wherez!".¢ {0 \{3} sy = Aford = 1,... ,nand0 < ¢;; < 1

fori,7 = 1,...,n., the RHCEDS s constructed by two RHCSs, denoted*bgnd G,
respectively. At the encryption €nd, a masking sequeff¢ds generated by the system
F(r,x) and used for encrypting theplaintgxXt..* At'the decryption end, the receiver re-
covers the plaintext from the ciphertext by removing the mask generated by the

systemG(r,y).

2.1.1 Robust Logistic Map

Before introducing the RHCS, we present a robust logistic map which is developed from a
classical logistic map.

A classical logistic map is defined by
T=yr(1—2x), z€l0,1], (2.1)
wherevy is a parameter anti< v < 4. In Equation (2.1), whef.57 < v < 4, itis achaos

8
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Figure 2.2: Classical logistic maps with= 3.62 and4.

region and the generated sequence is non-periodic. However, the set of parantletérs
result inwindowsof Equation (2.1) is open and dense. Moreover, the chaotic attractor is not
fully distributed within the range of 0 to. 1 and its length is less than one. In this gase,
easily detected by measuring the length of chaotic attractors. For example, in Figure 2.2(a),
when~y = 3.62, the length of attractor is'0.594.  The 'only useful case of Equation (2.1) is
when~y = 4 because its chaotic attractor s fully-distributed in the range of 0 to 1 as shown
in Figure 2.2(b). Therefore, the selectiomo¥alues-is limited.

In order to increase the parameter Space and to have a fully distributed map in [0,1], we

propose a robust logistic function as follows:

yo(l —x) (mod 1), z € oy,
Lono) = { elomedy e, (22
where Tl € (0,1) \ Line (do not belongline), fine = [m,m2), m = 3 — /1 — [%} and

N = % + \/i — %1 in which [w] is the greatest integer less than or equal A robust
logistic map (RLM) is then defined by = L(~y, z®).

By this modification, we extend therange to a value more than 4. Whéfyy, x) is
greater than 1, the first equation in Equation (2.2) is to shift the map value greater than 1

to the range of 0 to 1. Figure 2.3 shows that modular one operation kepariant in

9
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Figure 2.3: The mapping without normalization:o¥s. L(~, x) with v = 7 and31.

[0,1]. However, wherx is in the rangd;,;, the mapping is not fully distributed in [0,1], it
results inwindowof the map. Therefore, wheh(v, x) is less than 1, the second equation
in Equation (2.2) is to scale the value to-the range of 0 to 1. With both modular and scaling
operations, Figure 2.4 shows that'two maps-are fully distributed in [0,1] with piecewise
nonlinear map when = 7 and 31.

To understand if there argindowsin our robust logistic map when> 4, we analyze
the map by numerical methods."First; we compute the Lyapunov exponents by the method
in [25]. In Figure 2.5, Lyapunov exponents.of Equation (2.2) are computed frem0
to 16. It shows whery > 4, Lyapunov exponents are all positive. Next, we compute the
bifurcation diagram ofl.(, z) from v = 0 to 16. The result is shown in Figure 2.6. It
shows that, when > 4, L(~,z) is fully distributed in the range of 0 to 1 and there is
nowindow These numerical results indicate that the robust logistic map is indeed chaotic

with large parameter space when> 4.

2.1.2 Construction of Robust Hyper-Chaotic System

To solve the dynamical degradation and increase the output complexity, methods [20, 26—

29] with coupled map lattice for multi-dimensional system were proposecettdl [26]

10
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presented a synchronous chaotic spread-spectrum CDMA systeret alu[27] devel-

oped a spatiotemporally chaotic cryptosystem with one-way-coupleet dli [20, 28, 29]
generated multiple pseudo-random-bit sequences (or multiple keystreams) by spatiotempo-
ral chaotic systems, logistic.maps and skew tent-maps. Their results showed that coupled
chaotic maps can be a good candidate for generating chaotic sequence for security systems.

Based on a coupled map lattice a robust: hyper-chaotic system (RHCS) can be con-

structed. The system is defined by
x® = P, xE==cL(r, xY), (2.3)

(@) — [0 (@ (1)) — (i-1) -1 i whi
wherex"”) =[xy, ... x|, L(r,x"" V) = |L(m, 2y 7),..., L(n, 2 )| , in which

L is the robust logistic map defined in Equation (2.2), and

Ci1 Ci2 - Cin

Co1 Co2 -+ Copn
C =

Cnl Cn2 " Cpp

is a positive stochastic coupling matrix with all elemetts ¢;; < 1 and)_ ¢;; = 1 for
j

1,7 =1,...,n. The masking sequence is defined by

= 2\ (2.4)
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The systentz isalso an RHCS defined by

y9 = Gr,y" V)= CL(r,y" ), (2.5)
wherey® = [ f), cee y,(f)]T for i > 0. The unmasking sequence is defined by
20 = @, (2.6)

Note thatF andG are hyper-chaotic systemsi¥) andy®, respectively, with the same
parameters o€ andr.

The RHCS £ or G) is constructed by.-coupled robust logistic maps and each robust
logistic map in the system has its own positive Lyapunov exponent. To understand if the
dimension of the whole system in terms of the number of positive Lyapunov exponents is
indeed increased, we analyze the RHCS by numerically. Since the higher dimension of the
system, the more positive Lyapunov-exponents the RHCS has. Hence, we expect that the
behavior of the output masking sequenc@} is-more complex. The number of coupled
robust logistic maps being set to 2 (i.e.= 2)is taken as our example. In this case, there
are two parameterg and-, for two robust logistic maps. In Figure 2.7(a), two Lyapunov
exponents of 2-coupled robust'logistic:-map-are plottedyfoe 0 to 16 with the scale of
3—10, and a fixedy, = 29.6668. The result:shows when > 4, two Lyapunov exponents are
both positive, that is, the system is hyper-chaotic withvaadow Similarly, the number of
Lyapunov exponents for = 3, 4 and 10, where values of, 1 < ¢ < n are fixed, and the
range ofy; is from 0 to 16, are shown in Figure 2.7(b)(c)(d), respectively. We can see that
the number of positive Lyapunov exponents of the system are increasing withaldw
asn increased, provided that al] in the system are larger than 4.

In order to encrypt and decrypt information correctly, the masking sequéhaeaust
be identically synchronized to the unmasking sequeifée We first randomly create an
initial vectorx(® of the transmitter, and then send it to the receiver by replacing its initial

vectory© by x(. After this step, it holds that® = 2 for i > 0. Then the RHCEDS
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is ready for information transmission. On the other hand, if the bandwidth of the channel
isjust one component af(®), thenn steps are required to semdelements of the initial

vector to the receiver. Therefore, aftesteps, the vectoy®) will be equal tox(®.

2.1.3 Encryption & Decryption

In our secure-communication system, RHCEDS, the masking sequence of systdin
be used as a mask to encrypt plaintext. In other words, the cryptograph system is similar
to an one-time-pad block cipher. In this case, the randomness of the masking sequence
directly affects the security level of the system. To enhance the randomness of the masking
sequence, thémost significant digits are hidden in communications, that is, thekgits
are dropped and not used in the encryption. The more hidden digits are used, the more
difficult to analyze the encrypted information. However, the increased security is at the
expense of more computing resouree.. - In-our-experimental results, hiding two-digits is
found to have good randomness;which is examined by a random number testing package,
NIST SP 800-22 [30].

In summary, our secure-communication-system, RHCEDS, is implemented as follows.
In Transmitter :
We usen digits to represent all real numbersiin the sysféimcluding parametensandC,
and the initial vectox®). Givend = m — ¢ € N, fori > 1, the plaintexp is decomposed
into a sequence ofp} with the length of each” equal tod digits. The encryption

process is as follow:

@ _ L(i)J
< :L‘l [7

) = L0 g )

where® is an XOR operation, angds |, means dropping the firgtdigits fromz.

In Receiver.
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In receiver, the decrypted sequenpgs as follow:

26) {(i)J
z 2 Z’

50— 30 g ),

Since systems’ andG have the same initial vector antf! = (), we can correctly decode
ciphertext, that isp = p.
From the above descriptions, the properties of the RHCEDS can be summarized as

follows:

e There aren? selections of parameters to fonrmand C. The large parameter space

makes the attacking by brute-force enumeration infeasible.

e For the same plaintext, the crypto system can generate different ciphertexts with

different initial vectors.

e Incomplete carrier map is transmitted in the'public channel. Therefore, it is hard to

re-construct the map even’'under the assumption of “chosen plaintext” attack.

2.2 Cryptanalysis of RHCDES

The cryptanalysis of our system will be based on an example where the precision of the
system isn = 8, and the number of coupled robust maps is 2. Witk 2, the masking

stream generatar is shown in Equation (2.7).

2 = oLy, 2l V) + (1= en) Liya, 25 ), o
x(ZZ) = (1_CZQ)L(/YlufE(f_l))+022L(’72,l‘g_1)).

2.2.1 Parameter Space

Attackers may construct a chaotic map by identifying its unique orbit if the key space is

small. Therefore, the parameter space must be large enough for practical use.
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According to the bifurcation diagram in Figure 2.6 and Lyaponov exponents in Fig-
ure 2.5, we found that our robust logistic map hasmadows wheny > 4.

Therefore, we can judiciously choose a stochastic mairiand r to create am-
dimensional system with at least two positive Lyapunov exponents. That is, the system
(2.3) has navindow, which guarantees that there is no scruple by picking the parameters
to construct a hyper-chaotic system. Furthermore, the parameter space of the system (2.3)
is large enough for any practical application. For example, in Equation (2.7), there are four
parameters;, ca2, 71 and~, and the total number of parameters that can be selected is
24x32 — 2128 This parameter space is much larger t&f which is the suggested size for
parameter selection in [11, 22].

Moreover, one important property of the parameter is worth noticing. The generated
masking sequence has a very sensitive dependence on the parameters. Without this prop-
erty, attackers can easily find the relationship between parameters and their corresponding
masking sequences.

To show this property, an experiment is conducted. First, the masking stream generator
F shown in Equation (2.7) is taken.as an-:example. Next, a s€tahdr parameters are
selected as base to generate a-base masking segtignceThen, 200y, are generated
by varying the least significant bits of baseWith different, and the same, andC,

200 masking sequences are generated Whigre. 4.»-32,d = 1, ..., 100 denote the mask-
ing sequences. Finally, we compute bit error rate (BER) betviggn and Syqse+gx2-32-
The result is shown in Figure 2.8. It can be seen that the generated sequences are indeed

different even with a small change By3? in one parameter.

2.2.2 Re-construction

Attackers may plot the map by analyzing output sequences of a chaotic map. Unrolling

a system is a method to compute the values of unknown parameters. In our system, for
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Figure 2.8: BER betweef,,;. and.Sy,sct+axa-32.

example, when = 1, Equation (2.7)-has five unknown variables, s, c11, coo and:p(;).
Unrolling the system ta = 4, attackers will have. eight equations with additional three
unknown variables;f’, x(23) andx§4). Totally, eight'equations are given to solve eight un-
known variables. However,in RHCS; it is infeasible for an attacker to re-construct the map
by unrolling because of the following two features of our system. First, the masking se-
quence:( is an incomplete output sequence of the systerithe most significant digits

are dropped, that is;® # z\”. If there are four'” in the equations, each of?) drops

j bits, the possible combinations of fouf’ are(27)*. Second, mapping function is com-
puted using the modular one operation in our robust logistic map. The piecewise non-linear
map is not a one-to-one mapping. Given an outpuk ehap, there ar¢ | x 2 possible
inputs. There are eight maps needed to be solved in this example. The combination of
solutions arg[ 2] x 2)®. Assuming thaty is less than 2,048, andis 8, the attackers in
total need to try(2%)* x 1,024® possible combinations of equations to solve the unknown

variables taking the above two features into account. If we use a computer with 1 THz

(Tera Hertz) CPU to rumn0'? cases per second, then for the above example, it requires near
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one million years to re-construct the systémilt is obvious that re-construction of RHCS

is infeasible using current computation technology.

2.2.3 Statistical Analysis

To understand how precision affects randomness, we conduct randomnesstest for

tom = 12, wherem denotes the number of digits (4-bit for one digit). SP800-22 testing
package [30] is used in our analysis process to check the randomness of our system. The
masking sequence of the systdmis Lxﬁi)JQ where the most significant 2 digits of the

21 are dropped. Each test will produce a “p-value” from SP800-22 testing package. The
higher p-value (a minimal default value is recommended by 0.01), the more random the test
case. For each precision we choose three diffeyeim the RHCS system while keeping

the other parameters;, c;; andcys, unchanged. For eaeh, 100 sequences generated by
RHCS with the length 0f0° bits are fed to the testing package. As suggested in SP800-22,
for each statistical test, the minimum pass.rate of-a well random source is 0.97 out of 100
binary sequences. Table 2.1 shows the resultifoe-4,to-8. With this standard, we can

see that whemn is less than 8, 'the-randomness is obviously alleviated. On the contrary,
as shown Table 2.2, when is larger.than 8, the generated output sequences are indeed

random.

2.3 System Demonstration
2.3.1 Architecture of Encryption System

To demonstrate the effectiveness of the systénwe implement it in hardware. In our

design, the number of coupled robust logistic maps is selected to be 2.

. o 1 1 .
Let sca; and scay; denote two scaling factorg% od ) and T lmod respectively.
Since parameterg, -, scaq, Scas, c11, aNdeoy are constantsyy, . . ., Ng are precalculated

to reduce computation cost, where
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Table 2.1: The SP800-22 test results for= 2 to 8 with v, = 1709.ffd3,¢;; =
0.c8,cp =0.cCe

m=4 m=2=6 m =38
~v1(HEX) 100 | 2d49 | 7b63 |100. 80| 2d49. f f |7b63. 3b{100. 80|2d49. ff |7b63. 3b
Frequency 0.00 | 0.00 0.16 1.00 1.00 1.00 1.00 1.00 0.99
Block freq. 1.00 | 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98
Cumulative | 0.00 | 0.00 0.70 1.00 0.99 0.99 1.00 0.99 1.00
Runs 0.00 | 0.00 1.00 1.00 0.96 0.85 0.99 0.96 0.99
Longestrun | 0.93 | 0.00 0.00 0.99 0.98 0.98 0.97 0.98 0.98
Rank 0.99 | 1.00 0.88 0.99 0.99 1.00 0.98 0.99 0.98
FFT 0.00 | 0.00 0.00 0.99 1.00 0.98 0.99 1.00 0.98
Nonoverlap.| 0.79 | 0.24 0.85 0.99 0.99 0.99 0.99 0.99 0.99
Overlap. 0.00 | 0.00 0.00 1.00 1.00 0.99 0.98 1.00 0.98
Universal 0.86 | 1.00 1.00 0.97 1.00 0.98 0.99 1.00 0.99
Apen 0.00 | 0.00 0.00 1.00 1.00 0.94 0.99 1.00 0.98
Random e. 1.00 | 0.00 0.98 1.00 0.99 0.99 0.97 0.99 0.99
Randome.v.| 1.00 | 0.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
Linear Comp, 0.97 | 1.00 1.00 0.98 0.99 0.99 0.97 0.99 0.98
Serial 0.00 | 0.00 0.00 0:99 0:98 1.00 0.99 0.98 0.99
|Fai| Count | 11 | 11 | 9 | 0 | 1 | 2 | 0 | 1 | 0 |

N Y=z Wi

Noo Z59 4 Cri W@

N3 ="l99:x.(1 —<cir);

Ny = v X (1 —=cq1) X scas,
Ns = 7 x(1—cn),

Ne = 71 X (1—co) X scay,
N7 = 72 X ¢,

Ng = 79 X oo X Scas.

The four conditions to determine if a modular or scaling operation is to be performed

. (4] [2] [2] (2]
are-mzé—\/i—ﬁ,%:%-i- i—ﬁ,’n z 1—%2and773:%+ i—%.
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Table 2.2: The SP800-22 test results for= 10 and 12 withy, = 1709. ff d3,¢; =
0.c8,cp =0.cCe

m =10 m =12
v1(HEX) 100. 80 | 2d49. ff | 7b63.3b | 100. 80 | 2d49.ff | 7b63. 3b
Frequency 0.99 0.98 1.00 1.00 0.99 1.00
Block freq. 1.00 0.98 0.99 0.99 0.98 0.99
Cumulative 0.99 0.98 1.00 1.00 0.99 1.00
Runs 0.99 0.98 0.99 0.99 0.99 0.99
Longest run 1.00 1.00 0.99 1.00 1.00 1.00
Rank 1.00 0.98 0.98 1.00 1.00 1.00
FFT 0.99 0.98 0.98 1.00 0.99 0.97
Nonoverlap. 0.99 0.99 0.99 0.99 0.99 0.99
Overlap. 0.99 0.99 0.97 0.99 0.99 0.98
Universal 0.99 1.00 0.99 0.98 0.98 0.99
Apen 0.98 1.00 1.00 0.99 0.99 1.00
Random e. 0.99 0.98 0.98 0.99 0.98 0.98
Random e.v. 0.99 0.99 0.99 0.99 0.99 1.00
Linear Comp.| 1.00 0.97 1.00 1.00 0.97 0.98
Serial 0.99 0.98 0.98 0.99 1.00 1.00
| Fail Count | 0 | 0 | 0 | 0 0 | 0 |

Since~; and ~, are given by the user and remain unchanged during operationsz, 75,

andn, are all input vectors to the'system. Lgts,) be a flag variable ang, = 1(s, = 1)

whenn, < z%°

1

rewritten as

(2)

( Ny x 2
Ny
N
Ny

[ Ng x2{™!
Neg
N
Neg

\

X (1—uz
X (1—x
X (1l—x
X (1—=z
x(1—z
X (1—x
x(1—z
X (1—x

+ + + F

+ + +

+

S1
S1
S1

S1

S1
S1
S1

S1

< o (13 < 2575< ny) holds. -The systent’ (Equation 2.7) can be

=0,8 =0,
=1,5=0,
=0,5=1,
=1,8 =1,
=0,5, =0,
=1, =0,
=0,5=1,
=1,8=1.

The data flow of systen#’ is shown in Figure 2.9. In this flow, 6 multiplications are

required to generate one mask).
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Figure 2.9: The data-flow.of the mask generator.

To understand the tradeoff between area and performance, we will propose two ar-
chitectures to implement systef.  TFhe first one is for area and the second one is for
performance. Let us look at the'first design.; Since it is for area efficiency, multiple-cycle
architecture is adopted where only one multiplier and one adder are used and all multi-
ply and add operations use the same hardware at different cycle. Figure 2.10 shows the
block diagram of systend’ in hardware. In this design, a two-stage pipelined multiplier
is implemented. Hence, it requires 6 cycles to generate one mask. Besides the two-stage
multiplier, the system has two registers, “RegA’ and “RegB”, for temporary data storage
and four add/subtracters. Block “NEG” compuf€€'G(z) = 1 — z and block “IntCheck”
is used to check if the input is if,; or not.

The second design is for performance efficiency. Pipelined architecture is adopted. The
data flow of our system is partitioned into 2 stages separated by registers, and hence a 2-

stage pipelined design. The data flow is shown in Figure 2.11 and the block diagram in
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Figure 2.12. In this design, four multipliers are used and run in concurrency. One mask is
generated at every cycle.

We describe our multiple-cycle and pipelined architectures in hardware description lan-
guage (HDL), and then synthesize them by commercial tools. To be more specific, two
designs are written in Verilog and synthesised by Synopsys Design Compiler with TSMC
.18 wm technology library. Area and timing information is obtained in gate-level netlist.

Moreover, we want to understand the hardware overhead when pregisien8 is
increased ton = 12. Implementations forn = 8 andm = 12 are performed. That
is, all real numbers in the system is represented by 8 (12) digits. Then, in hexadecimal
representation (one digit is 4 bits), the system operates in 32(48) bits. The number of
hidden digits/ is selected to be 2. With 2 hidden digits, the length of one masking stream
is 24 (40) bits. Hence, the plaintext sequence will be divided into segments of length of 24
(40) bits.

Table 2.3 shows the synthesized results. Wheg: 8, the experimental results show
that the transmitteF’ of multiple-cycle design achieves an encryption rate of 400M bits per
second with 9.4K gate count. When implemented.in the pipelined architecture, the system
generates mask sequence at a rate-of 2.4G bits. That is, our pipelined architecture is 600%
faster than the multiple-cycle one. However, the area of pipelined architecture is 401%
larger than that of multiple-cycle one. Moreover, by increasing= 8 to m = 12, for
multiple-cycle architecture, the system performance is 167% faster with 233% more area,

for pipelined architecture, 1000% faster with 938% more area.

2.3.2 Example

We use the following parameters to demonstrate the systevith m = 12 andn = 2.
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Table 2.3: The synthesized result of encryption system.

m=3_8 m =12

Architecture multiple-cycle \ pipelined | multiple-cycle \ pipelined
Gate Count(k) 9.4 37.7 21.9 88.2
Throughput 1/6 1 1/6 1
Mask Length(bits) 24 24 40 40
Clock Frequency(Mhz) 100 100 100 100
Bits Per Second(M bits 400 2400 667 4000
Area Ratio 1 4.01 2.33 9.38
Performance Ratio 1 6 1.67 10

29 = 0.26e7bf70710c

x(20) =. 0.3cebedeO4ech

Y1.-=_ 15.0000000000
2 - =".23.0000000000
¢11 = 0.fe0000000000
cs - ="0. £a0000000000

Table 2.4 shows the encryption result of the plaintext “The Digital Encryption.” The
plaintext is encoded into ASCII code format, and the data sequence will be encrypted by
a masking sequence which is generatedfbwith the above parameters. The result also

shows the receiver can recover the plaintext with the same parameters.

2.4 Summary

We have proposed a Robust Hyper-Chaotic Encryption-Decryption System composed of

two RHCSs that is suitable for digital secure-communication. An RHCS consists of
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Table 2.4: The encryption example.

Plaintext:

The Digital Encryption.
Plaintext in ASCII Code:
546865004469676974616c00456e6372797074696f6e2e
Ciphertext:
5477bc5de59b7f735bac76c8a022ebaad4a763c2ed41b9d
Decrypted plaintext:
The Digital Encryption.

coupled robust logistic maps and has a large parameter space which grows along with
system precision. Because multiple coupled robust chaotic maps rather than a single one
are used, map re-construction of the RHCS system is not feasible by current computation
technology. The result shows that the generated masking sequence has good randomness
for stream cipher. Two hardware architectures (multiple-cycle and pipelined) have been
proposed for area and performance optimization, respectively. The demonstration shows

that RHCS can be easily realized-in hardware.
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Chapter 3

A Fast Non-Linear Digital Chaotic
Generator In Secure Communications

In Chapter 2, we proposed RLM to extend the parameter space fort and a coupled
hyper-chaotic system to generate_more.-complex output sequence. Although the output
sequence of the system has good-quality of randomness, it needs up to three multiply oper-
ations to compute the next states{15]. The-cost is Jarger than a classical logistic map where
only two multiplications are used. :Moveover, multiply operations are required to form a
coupled system. These extra multiply operations:limit.the throughput of the system.

In this chapter, we will propose a Variational L-ogistic Map (VLM) with un-restricted
parameter space, and can be implemented at lower cost as compared with classical logistic
map. First, we show that the raw model of our VLM is a chaotic map by computing the
discrete Lyapunov Exponents [17] for different parameters. Then, to verify the chaotic
properties of our digitalized VLM, a set of numerical experiments including return map,
output cycle length and output spectrum analysis are conducted. Moreover, SP800-22 [30]
and TestUO1 [31] are applied to verify the statistical properties of the proposed system.

Then, we design a Multi-VLM (MVLM) system constructed by VLMs to have output
sequence with higher degree of complexity and larger key space than a single VLM. An

MVLM constructed by four 32-bit VLMs can generate sequence with cycle length more
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than 2!2® with a 128-bit external key. We demonstrate that MVLM can generate output
sequence with well quality of randomness in higher throughput and lower hardware cost as
compared to robust hyper-chaotic systems (RHCS) [15].

Finally, cryptanalysis is conducted, we show that MVLM has large parameter space,
long output cycle length, and is hard to reconstruct. From statistical point of view, outputs
of MVLM with different keys have small correlations to each other. Moveover, MVLM
passes all tests in SP800-22 and TestUO1 which indicates MVLM has good quality of ran-
domness.

The rest of this chapter is organized as follows. In Section 3.1, the Variational Logistic
Map (VLM) is presented. In Section 3.2, we propose a scrambling method to scramble the
output and parameter of VLM. In Section 3.3, architecture of MVLM will be shown. In
Section 3.4, cryptanalysis will demonstrate that our system is suitable in secure communi-
cations. In Section 3.5, we present hardware implementation of MVLM system. Finally,

summary is given in Section 3.6.

3.1 \Variational Logistic Map (VLM)

Again, a classical logistic map is defined by
L(y,z) =vz(l1—2), z€(0,1). (3.1)

Most of chaotic behavior indexes such as the invariant set, Lyapunov exponent, topologi-
cal, metric, and Renyi specific entropies show that the logistic map has complex behavior.
However, these indexes are computed under real number definition and without direct rela-
tionship to requirements of secure communications. Two facts show that parameters are not
equally strong. The first one windowsin parameter space. In [32], authors have proved
that the parameter space of logistic map hasdowswhich is open and dense. Namely,

a large number of chaotic orbits are unstable, i.e., settle down to a stable orbit which has

30



short cycle length and can not be improved even the system precision is increased. Parame-
ters inwindoware obviously not secure. The second one is limited precision of digitalized
chaotic map. If the difference of two numbers is smaller than the resolution, two numbers
will become identical during computation. Some parameters may generate short length
orbit because two close points on the orbit become identical due to truncation. Based on
the above two observations, a classical logistic map can not be directly utilized in digital
security system.

In order to remove thevindowgenerated by Equation (3.1) and to preserve the advan-
tage of fully distribution in (0,1) fory = 4, in Chapter 2, we proposed a robust logistic map
(RLM) to extend the parameter spaceiyto- 4. RLM is fully distributed in (0,1) and has

nowindowwhen~ > 4. RLM is given by

f}/xl(l - xz) (mod 1), x; € [extu
i = Li(I— x4 ) (m 32
Tit1 { W, T € Ling, 52
herer, D\ ity Tins = — 2 b A Bl gy, =1 /1 Lk
wnere ext c (07 )\ ints Lint — [7717772]’771 b Z—Tan "= §+ Z_Tln

which [w], is the greatest integerless thamor equal

Although RLM extends the'parameter space and presents chaosywhen [33],
to compute the next state of RLM, 'it'‘needs" up to three multiplications while only two
multiplications are used in a classical logistic map. More precisely, the first multiplication
is used to computéyz;) and the second multiplication is used to multigly— x;). The
third multiplication is needed to multiplff; (mod 1))~ Lif z; isin I,,.

Since we focus on digital secure communications, we will proposed a Variational Lo-
gistic Map (VLM) which is based on RLM in digitalized implementation. When compared
to RLM, VLM also extend parameter space+o> 4 and needs only two multiplication
operations to compute the next state.

To construct VLM, first, we propose a raw model,
Ly(o,.7) = {a[(ayz) (mod 1)] (1 — )} (mod 1), (3.3)

31



which is equivalent to
Lyp(a,y,2) = o (ayz — [ayz]g) (1 — z)] (mod 1), (3.4)

In fact, Equation (3.4) can be rewritten by

a,v, 1) — gla, v, @ if f>g,
L”(O”"”):{ ﬁ&,lxi—iﬁa,lxiﬁ if§<§, &9
where
fla,v,2) = [@®yz(1 — 2)] (mod 1), (3.6)
and
9(a,7,2) = {alayz]g(1 — z)} (mod1). (3.7)

wherea,y > 0, andz € (0, 1).

Letd = a?y = 4k, k € N, functionf can-be rewritten ag = [z(1 — z)] (mod 1).

By the definition of Equation (3.2), the intervdy,;, of function f is equal to

Iing = [771 ; 772]

[y

- 1

which means there is noin I,,. When+ is a multiple of four, functionf is a subset of

[l 1l
eV ] 58

—
N[
N [

RLM. Hence,L, is constructed by RLMf, and functiory which is a scrambling function
with respect to functioryf.

Then, ag-bit VLM will be defined by a digitalized_, in ¢-bit precision. First of all,
we define the value of coefficienisbecause the value afwill affect the truncation result
during successive multiplications and modular operations.

To define the value afi, We start from the point of implementing the multiplication in
finite-precision arithmetic. Because the multiplication is defined in finite precision, to store

product in the same number of bits, truncation is needed after multiplying two numbers.
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For example, in Figure 3.1(a), let b and ¢ be 4-bit binary numbers and = a x b.

The result ofa x b will be truncated from 8-bit to 4-bit and assigneddo Suppose the

least significant bits be truncated. We find thatis directly determined by only 6 partial
products, which aresb;, asbs, asbs, asbs, asbz anda,b3, and indirectly determined by the
carry-outs generated by other partial products. That means, the change of inputs may not
cause the change of outputs. Hence, with differerd sub-operatiory x x in a logistic

map may lead to the same next value during sequence generation because the difference
in the least significant bits is eliminated by truncation. That differentan not generate
different orbits result in short length cycles.

On the contrary, in Figure 3.1(b), the valueqf depends on the largest number of
partial products. That means, when any bit of input is changgdas higher probability
to change its value than;.

The purpose ofv in equatione =(aab)(mod 1).isto make the output of the equation
depend as many input bits as possible. We construct an experiment to see the output dis-
tribution versus different values ef in equationc =-(eab)(mod 1) wherea = 2% and
k = 0,4,8. Leta, b andc be 8-hit binary numbers in (0,1) artdp,psps - - - p1g denotes
16-bit product ofa x b. For example; when =-24; the result of(aab)(mod 1) is equal
to 0.psps - - - p16. Because: is 8-bit,; pi3, p11; 015, andpi¢ are dropped. Three resulis,,
cur, andey are computed witlv=28, a=2%, anda=2° respectively. More specifically;, is
equal to0.pgp1o - - - P16, Car 1S €qual td).psps - - - p12, @ndcy is equal td).pips - - - ps.

Let e andb be selected in uniformly distributed. The Probability Mass Function (PMF)
of ¢, c)y andcy are shown in Figure 3.2(a)—(c), respectively, where the x-axis denotes the
value ofc. The results show that, for truncated resyjtandc;, we can observe results
in higher probability in some values. On the contrary,has even probability distribution.

The values of standard deviation faf, ¢,;, andcy are 0.26, 0.05 and 0.39, respectively.

The uniform distribution is an important property when a function is applied to a crypto
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Figure 3.1: (a) The least significant 4 bits truncated. (b) Preserving middle significant bits
in truncation operation.

system.

In Equation (3.3), to make the output of map-uniformly distributedhould be equal to
half length ofz. Sincex is in ¢-bit pre¢ision;a is equal toor = 231, Here, our digitalized
VLM in ¢-bit precision is shown in Equation (3.9). Before the presentation of VLM, we
define a binary floor function|z |,, which preserves the most significanbits of x and

sets other bits to be zero. The VLM is defined as

VLM(ry,z) = [[a[(ayz) (mod1) |4 (1 = 2)] (mod1) |, (3.9)

wherex and~y areg-bit binary numbers in (0,1). Let[:] be theith bit of variablez. = and
v can be represented hy= >"27'z[i], andy = > 27"4[¢] for i = 1 to ¢, respectively.

The detail of computation is as follows.
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0.psps - - - P12, and (C)ey = 0.p1ps - - - ps.
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We take a 32-bit VLM as an example to describe the calculatiovi b/ (v, z). At
the beginning(2'%~x)(mod 1) will be computed first. The result ofz will be computed
and modulated to keep the value between (0,1), and then truncated to 32-bit by truncation
operation. More specifically, the integer partdf~x is the most significant 16 bits of
2162 sincer andy are between (0,1). THenod 1) operation will drop the most significant
16 bits of2'%yx, and | (2'%yx) (mod 1) |3, operation will drop the least 16 significant bits
of 215~v2. Hence, the most and least significant 16 bitsofare both truncated, and then
the result is passed to the next step.

Let [ (2'%yz) (mod 1) |3, bep. p is a 32-bit binary number and will be multiplied by
1 — 2. Sincep(1 — x) is a 64-bit binary numbep(1 — x) will be truncated to 32-bit by the
same way we truncater. Finally, V LM (~, x) is a 32-bit number and between (0,1).

One last constraint is for the value ©f ~.is in ¢-bit and between (0,1). Whel? <
v < 271 the result ofa?y in Equation (3.4)-is smaller then 4. However, as studied
in [33], %y is required to be-a multiple of 4 for Equation (3.4) to generate a chaotic map.
In order to keepy?y a multiple of four, we let the least significant two bitgg — 1] and
7v[q], be equal to 0. That means:the smalless 2~ % 2) and the smallest value of’y is
23 x 23 x 27(==2) which is equalt@?; Hence, we guarante€- to be greater thah and
a multiple of 4.

In Figure 3.3, we plot the return map of VLM with= 2716, Even with a small value
of v, VLM becomes a nonlinear map with plenty of discontinuity.

The truncation operation duringL M (v, z) computation make® LM (-, z) not con-
tinuously differentiable, but the truncation error can be treated as a scrambling function of
Equation (3.3). Because of the discontinuity of the function, it is difficult to theoretically
prove the chaotic property of the proposed digitalized VLM. Hence, numerical experiments
to verify the chaotic properties of VLM including tliéscrete Lyapunov Exponefii7], the

bifurcation graph output spectrum analysiandoutput cycle lengtlare conducted.
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VLM(v,x)

Figure 3.3:V LM (v, z) with ' = 2716,

1). The discrete Lyapunov Exponent:and bifurcation graph.

The discrete Lyapunov Exponent (dLE) [17] was used to verify discrete chaotic properties
of the proposed system. L&t be a finite subsegment of the trajectory in lengttior a
digitalized mapF' andd(M,,, M, ) be the distance betweéd, and/,, where)M,, and}M,,

are inM. The basic expression of dLE is defined as

1 d(F (M), F(M,)
Ap = — Z% In IS TANE (3.10)

Map F' is considered as a discrete chaotic map if it's dL&)(tends to a positive
number whernm — oo. For example, lety = 4, dLE of a 32-bit classical logistic map is

0.69 whenm = 10000.
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Figure 3.4: dLEs for 32-bit VLM wher =3°-< ~ /<272, wherem = 100, 1000, and
10000.

We compute dLEs for 32-bit VLM whe "</~ < 2729, For eachy, dLEs are
calculated with three differents; 100,-1000, and 10000 to understand the trends of dLEs
whenm is increased. For each, dLEs for.1000 different trajectories are computed and
the average value is shown in Figure 4.1. The results show that dLEs are all positive when
~ > 0. Moreover, dLEs are increased whenis increased. Hence, we know VLM is
discrete chaos as defined in [17].

Moreover, to understand if there amndowsin VLM. We compute the bifurcation di-
agram of VLM fory = 2730 to 2=, The result is shown in Figure 3.6. It reveals that the
output data of VLM has navindowfor v = 273% to 271, As a result, from theoretical and

numerical point of view, we know that VLM is a pseudo-chaotic map.
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2). The output spectrum analysis.

To analyze the auto-correlation and spectrum of output sequences, we randomly select the
values ofy andxz,. Figure 3.7 shows the results when= 0.609375 andz, = 0.21875.

First, in Figure 3.7(a) we plot 10,000 output data. The result shows that the output sequence
is visualized randomly. In Figure 3.7(b), the spectrum analysis by FFT signifies that the
output sequence is a chaotic sequence [25]. In Figure 3.7(c), the auto-correlation of the

output sequence indicates that the output data are quite independent.

3). The output cycle length.
This experiment is conducted to compare the cycle number of an output sequence generated
by

Tir1 = VLM(v;2:)5..1=0,1,.... (3.11)

with that by a classical logistic map in 32-bit precision.

With random initial values; the cycle lengths of 10,000 output sequences are gener-
ated by 10,000/s chosen evenly:from interval:®® < v < 27! for our VLM shown in
Equation (3.11) and from interval57 <+ < 4 for a classical logistic map.

In Figure 3.5, we observe that in-10,000 output sequences generated by logistic map,
over 10% of the output sequences-form periodic orbits with a period less than 100, and
only 9% of the output sequences form chaotic orbits with cycle lengths more&thaoo.

On the contrary, the result by VLM shows that there is only 0.2% of output sequences with
cycle lengths smaller than 100 and 31.8% larger than 50,000.

As to hardware cost, the modular arithmetic and truncation operation in Equation (3.9)
can be easily implemented by bit-selection, i.e., by signals routing. Implementation of
VLM will not increase circuit area as compared with classical logistic map. From applica-
tion point of view, our VLM is more efficient and reliable than the classical logistic map

under the same implementation hardware cost. Thus, based on the above properties of
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Figure 3.5: The histogram of cycle length for VLM and classical logistic map.

VLM, in the next two sections, we will develop a scalable Multi-VLM (MVLM) system to

increase key space and complexity by scrambling and coupling methods.

3.2 Scrambling Method for VL:M

Although VLM has nowvindowin parameter space; similar to other digitalized chaotic map,
the output cycle length is far below the number of states. As shown in Figure 3.5, 68.2%
of 10,000~s generate an output cycle with length small than 50,000. The cycle length is
relatively smaller than the number of states of a 32-bit VLM.

Scrambling methods are useful and widely used in digital chaotic system. In [5], an ex-
ternal uniformly distributed pseudo random number sequence is used as a noise to scramble
not only the output but also the parameter to increase the cycle length. In [34], a linear-
feedback-shift-register (LFSR) which has uniformly distributed outputs is used to scramble

the output of a digital chaotic system. The scrambling strategy for VLM is shown in Fig-
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Figure 3.6: The bifurcation diagram-of VLM f@ 30 < < 271,

ure 3.8, where., is ag-bit LFSR and) is a one-Step delay block.

The LFSR,L,, generates a pseudo random:number sequensbich is defined as

n; :Lz(ni;l), 220,1, (312)

Then,n; is xor-ed withz; to scramble outputZ, should be primitive to have a max-
imum cycle length output and uniform scrambled outputs. From Equation (3.12) the se-

guence generated by VLM after scrambling is defined as follows.

By the proposed scrambling method, a deterministic bound of cycle length is calculated

as follows. In [34], the low bound of cycle length of a scrambling system is given by

A (28 -1), (3.14)
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Figure 3.8: The scrambling strategy for VLM.

whereA is the scrambling period arlds the register length of the LFSR.

Li's [12] scrambles outputs of a logistic map by a fixed pattern wtk= 700. By this
method, the cycle extension is small becausetf@ndm are small. Moveover, the method
needs a counter to count the scrambling period. In our proposed scrambling nietod,

[ are equal td andq, respectively. For a-bit VVLM;.the low bound of cycle length i87—1.
The hardware cost is@bit LFSR which'is smaller than a counter used to count the period.

In order to generate uniformly.distributed outputs'with maximum cycle length, a primi-
tive LFSR is used in our scrambling system. After scrambling, the output as well as the next
input of VLM tends to be more uniformly distributed. An experiment is conducted to show
that the proposed scrambling can improve the output distribution by measuring the 1's prob-
ability of the output sequence generated by a scrambled 32-bit VLM. In this experiment,
is equal ta(0.10001000) ; andL, is defined byL . (z) = 2+ 23 + 230 + 2% + 228 +- 222 4-1.

For each scrambling periodl)® outputs are generated. In Figure 3.9, when the scrambling
period is decreased, the probabilities of 1 in outputs are close to 0.5.

We will verify the statistical property of VLM with scrambling method by statistical test
suite in Section 3.4.4. It will show that VLM with scrambling can significantly increase
output complexity when compared with classical logistic map. In next section, we will

construct MVLM by coupling VLMs to improve output complexity and enlarge key space.
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Figure 3.9: The 1's probability when scrambling the sequence with different period.

3.3 Coupling Multi-VLM

Based on VLM and scrambling functions, a scalableMulti-VLM (MVLM), is proposed to

increase the number of keys and-complexity-of output sequence.

3.3.1 Structure of Multi-VLM

An MVLM is constructed bym VLMs denoted by L M; for i = 1 tom. For each/ LM;,
the output is scrambled by a noise sequente, generated by a globag ¢ m)-bit LFSR,
L,.
Let the output oft’ L, at jth iteration be:cgj ) and:cgj) be scrambled by a segment of
(¢ x m)-bit noise sequence,”)[1 : gm]. The scrambling function is defined by
29 =D i = 1) +1:¢i), j=0,1,..., (3.15)

wheren) is generated by.,, andnV*V) = L, (n\)).
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The scrambled result oF LM;, 7", is fed to VLM, exceptzy, ™" which is

generated by the last VLM and fed t0L M,. The whole system forms a cascaded chain

and can be defined by

o _ ] vEM@D 2, =1 (3.16)

i () =) : :
VLM (v, z;”), 1<i<m.

Finally, the output sequence of MVLM is generated by an output fundio®utput

function will be discussed in Section 3.3.3. The output sequéages given by

Seq; = T(zy™V),  j=0,1,.... (3.17)

For example, a MVLM constructed by 4 VLMs is shown in Figure 3.10. In this system,
m is equal to 4 and all VLMs are in 32-bit precision. The 32-bit outpl(t’j)t of VLM, will
be xor-ed byn?)[1 : 32] to generat@ﬁj), which is fed toVLM,. Similar connections are
constructed foVLM, andVLMs. Finally, the last:{"is xor-ed byn /) [97 : 128] to produce
z) which is fed toVLM; .

The last problem to be solvedis the initial statég), fori = 1to 4, andn, for L,. With
different initial states, outputs of MVLM-will be different. In next section, key initialization
process is used to generate initial states. Afterkey initialization, MVLM is ready for output

Seq.

3.3.2 Key Initialization

In Section 3.1, we have shown the chaotic properties of the VLM, where with small dif-
ferences inr and in~, the generated output sequences will be very different. In MVLM,
this chaotic properties are not only used in generating the output sequence but also used in
key initialization. Key initialization generates valuesgf z.”, andn® for i = 1 to m,

calledinternal keys The purpose of key initialization is to generatéernal keyshat have
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Figure 3.10: The top view of a MVLM coupled by 4 VLMs.

minimal relations to the user specifi&Y. With differentinternal keyseach MVLM can
generate different output sequence.

Without loss of generality, we take the MVLM shown in Figure 3.10 as an example of
key initialization process. The process can be easily extended to a MVLM constructed by
m q-bit VLMSs.

The input of key initialization procedure is 428-bit KEY and the outputs ariaternal

keys There are two steps in key initialization. The first step USEY and default value
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to generatantermediate internal keysThen, the second step will use theermediate
internal keydo creatanternal keys

The purpose of the first step is to allow bit changelsiY to have influence oimternal
keys In the first step, the configuration is shown in Figure 3.11. The initial value of each
VLM; for : = 1 to 4 will be given by following equations. First, eaghis assigned by
K EY[1:64] with

1, k = 1;
vilk] ={ KEY[16i +k —32], 17<k <32 (3.18)
0, others

wherel < k < 32. Then, K FY[65:128] is loaded t@ﬁo) by

O] = { KEY[16i+ k +48], 1<k <16; (3.19)

0, 17 <k < 32.
Finally, K EY also becomes the-initial value of nois€’) by equation defined as fol-

lows.

DOk} = KEY: (3.20)

Moveover, in order to reduce the correlation betwéehy and~;, the least significant
bit of /) is fed back to generatg in the first step of key initialization. We will shift,
right one bit per cycle and replace the most significant bif; diy the last significant bit of

2 where the updating function of is given by
v = (v > 1) @ (0x00| |27[32] & 0x01) ), (3.21)

wherei = 1to 4.
The architecture of cascaded VLMs we use in the first stage is shown in Figure 3.12.

Let one output be generated in one cycle with initial values described in Figure 3.11. The
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Figure 3.11: The initial-values tg LA/, from KEY .

system runs 128 cycles to generafe™ and-}, wherez"*® and-; are called thénterme-
diate internal keysnd will be used to generabeternal keys The reason why 128 cycles
are required is that LFSR will shift one bit to left each cycle and the length,af 128
bits. It needs 128 cycles to shift the first bit to the last bit.

In the first step, value ok(” is directly assigned fronik EY and generated by,
which is linear and predictable. In the second step, we usatbeanediate internal keys
to generater”) non-linearly and chaotically.

In the second step:,gj) is fed toV LM, for i = 1 to 3 without scrambling and the last
xff) is fed toV LM,. The configuration is shown in Figure 3.13. Moreover, the first bit of

27 ie.,2Y[1], is fed to a 128-hit registen,.,. With z\'**" and~; generated in the first
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step, the system will run the next 128 cycles to genetatgwhich can be defined by
_ _ (k)
Npeglk — 128] = 23" [1], 129 < k < 256. (3.22)

One bit ofn,., is generated one cycle by cascaded VLMs. After that, the value.pf
will be used as initial values df,., n(®.

Key initialization procedure totally needs 256 cycles. The first 128 cycles is used to
propagate the influence of each bitAhFY to intermediate internal keys. In the second

128 cyclesjntermediate internal keyare used to generate., (i.e. n'%) and reduce the
(0)

3 .

correlation between® and KEY. After 256 cycles, the values of*® becomer

Then,z\”, ~; andn(®) which areinternal keysare ready for MVLM to generat8eq.

2

3.3.3 Output Function

Thez!? generated by MVLM is a good random source for security application. The output
function is used to further increase the complexity'and prevent the whole trajectory from
attacking. With small amount of implementation-cost, bit-selection is the most common
method to perform output function where several bits of trajectory are selected to be the
output. At one extreme, only one-bit is.selected. In this case, reconstructing the trajectory
from the output is impossible but the system is not efficient since only one bit is generated
in one cycle. The number of selected bits can be decided by the secure level that application
needs. For example, if 8-bit output data for application usage is required, the output func-
tion can be defined by selecting the middle 8 bits from a 3%—3&& : 32], andSeq|1 : §]

will be equal to.f%)[li% : 20]. The selection provides a trade-off between output efficiency

and information security.

3.4 Cryptanalysis of MVLM

In this section, we consider some security properties and general attacks against a MVLM.
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Figure 3.12: In the first step of key initialization, will be shifted to right one bit per cycle
and the most significant bit of will be:replaced by:”[0].

3.4.1 Key Space

The key length of MVLM is § x m) bits wherem is the number of coupled VLMs in
MVLM and ¢ is the precision of VLM. In Section 3.3.2, 128-6itFY is used to generate
internal keyswhich are values of four 32-b{zt§0), four 32-bit; and one 128-bit°. There

are two properties we want to ensure in key initialization stage when wekifap to
internal keys One is being a one-to-one mapping and the other is to reduce the correlations
between both.

Since segments df 'Y are separated and assigned as initial states of primitive LFSR
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Figure 3.13: Using cascaded VL Ms to-.generate in the second step of key initialization.

which areL,, the LFSR will generate different sequence with differ&ritY’s. That means

the map is a one-to-one mapping. Moreover, the second property that the correlations
betweenkK FY andinternal keysshould be reduced is also achieved becanisznal keys

is generated after 256 chaotic-system iterations staring &/i#". The key space of the
MVLM is 2128,

3.4.2 Cycle Length

To avoid short length of a single VLM, we use-dit noisen; to scramble each output;,

periodically. The cycle length of; is not predictable but the cycle length of depends
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on the length of LFSRL,., which is2? —i1. Since.the scrambled output is computed by
x; dn;, 27— 1is the low bound of the eycle length of scrambled output. In a MVLM which
is constructed byn VLMSs, the scrambling.noise is @ (x m)-bit n;. The minimal cycle
length of Seq will be 27 — 1. In Section. 3.3, the eycle length of the MVLM coupled by
four 32-bit VLMs will be at leasp!?® = 1.

3.4.3 Correlation

The cross-correlations between the output sequences generated by différgistis con-
sidered. To check this properties, tWeqgs are generated by selecting all 32-bit of MVLM'’s
output described in Section 3.3, i.€¢q; = z¥) whenKEY = 0 andKEY = 1. Note
that, only one bit is different between these two inaUE'Y's. In Figure 3.14, it shows that

the cross-correlations between two sequences generated by B are very weak.
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Table 3.1: Parameters for SP800-22.

Block freq. | m=128 Serial m=16

Longest run| M=10000 Apen m=10

Nonoverlap., m=9 Linear Comp. m=500
Overlap. m=9 Universal | L=7,Q0=1280

3.4.4 Statistical Analysis

The randomness of the our system is tested by two test suites, SP800-22 developed by
NIST [30] and TestUO1 proposed by L'Ecuyer [31]. The SP800-22 test suite has been the
standard reference for randomness testing. Hence, we use SP800-22 as our first randomness
test. Then, to further compare the randomness of the proposed system and other digital
chaotic generator, TestUOL is used.
We summarize the configuration for -SP800-22 tests as follows. We let 0.01,
T = 120, and others be the values-as shown in-Table 3.1. For each test, 120 sequences will
be generated by systems with'the lengthi@f. For.each sequence, each test produces a
P-value whereP-valueshould be-in range,-[0.01, 1.00], to pass the test. For each test, the
minimum passing rate of a well:random;:source 150.9627 out of 120 binary sequences. The
distribution measurement of collectPevaluesdenoted-byJ-valueare also reported. Ifl-
valueis greater than0—*, the sequence can be considered to be a good random-sequence.
To test by TestUO1, three test suit&mnallCrush Crush andBigCrushare applied.
Recommended by TestU0SmallCrushncluding 15 sub-tests is taken as a fast check for
the basic randomness requirement. NéXtush needs2®> output sequences to perform
further 144 tests. FinallBigCrushis the most stringent statistical testing suite in TestUO1.
It needs23® output sequences to perform 160 statistical tests. For each testlae is
calculated. Ifp-value is out of the range([001, 0.9990], the system fails the test. In the
following, we will illustrate the quality of randomness of the proposed system in terms of

statistical testing results.
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1). Randomness improvement by the scrambling function.

The first experiment is conducted to understand the efficiency of the scrambling function
described in Section 3.2. A 32-bit VLM with/without scrambling function is tested by
SP800-22. The initial values afis (0.05079f23)y and polynomials of, are chosen as
Lo(z) = 23 4+ 23" + 230 4+ 22 + 2% 4 222 + 1. All 32 bits of system output are selected and
fed to testing package directly. As shown in Table 3.2, without the scrambling function,
theVLM fails some tests because the short output length. On the contrary, with scrambling
function, thescrambled VLMpasses all tests and has uniformly distribyteglues for all

tests in SP800-22 test suite.

2). Quality of randomness versus system precisions.

To understand quality of randomness_of a scrambled VLM when system precision is in-
creased, testing results of systems in 16-bit, 20-bit;. and 24-bit are shown in Table 3.3. The
results show that when system precisionis 16-bit;the scrambled VLM fails 7 tests because
of the non-normally distribute@-values shown'in column 3. However, when system pre-
cision is larger than 24, the scrambled VLM passes all tests in SP800-22 and has uniformly

distributedP-values.

3). Comparison with previous work.

We will compare the proposed system to several digitalized chaotic map based genera-
tors with respect to quality of randomness. The first system is Li’'s system [12] based on
classical logistic map. To increase the output cycle of digitalized logistic map, Li used

a timing-based reseeding method which disturbed the last five least significant bits of the
output sequence by a fixed pattern when a period of time is reached. The second system is

Robust Hyper-Chaotic SysterRHCS coupled by two robust logistic maps (RLM) [15].
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Table 3.2: The statistical test results of the VLM with/without scrambling function by

SP800-22

VLM scrambled VLM

Tests Yield | U-value| Yield | U-value
Frequency 0.9917| 0.04374| 0.9917| 0.77276
Block freq. 0.9917 0 0.9833| 0.99146
Cumulative 0.9917| 0.00347| 0.9875| 0.72303
Runs 0.9917| 0.00038| 0.9917| 0.42203
Longest run | 0.9833 0 0.9917| 0.39245
Rank 0.9583| 0.40709| 0.9917| 0.07044
FFT 0.9917| 0.96429| 0.9833| 0.29925
Nonoverlap® | 0.9821| 0.02469| 0.9812| 0.51330
Overlap. 0.9917| 0.01596| 0.9917| 0.26445
Universal 0.9417 0 0.9583| 0.78872
Apen 0.9917| 0.00516| 0.9833| 0.35048
Random €. 0.9966| 0.67224| 0.9895| 0.69997
Random e.v. | 0.9918| 0.08338| 0.9899| 0.09493
Seriaf 0.9750/.0.00054.}0.9833| 0.81194
Linear Comp.[ 0.9750:0.232761.0.9750| 0.58520
| Fail Count T~ [l 2t n i w02 | 0 |

*average result of multiple tests’is shown.

The third system is Addabbo’s system [14] based on: piecewisedl chaotic map. By uti-

lizing the nonlinear property during truncation, Addabbo’s system extended the period of

Rényi chaotic map with length up &% — 1. Authors also provided a method to combine

two subsystems to form a system that has maximum global cycle length and well quality

of randomness.

The comparison results are divided into two groups according to bits of output per

cycle. The first group contairdassical logistic mapLi’'s andAddabbo’ssystems, where

one bitis generated per cycle. In order to compare ours to systems in group one, the 16th bit

of z; is selected as the output ¥L.M. The second group contaiRHHCSwhich generates

24-bit output per cycle. All systems are operated in 32-bit precision or the closet precision

55



Table 3.3: The statistical test results of a scrambled VLM in different precisions by SP800-

22

16-bit 20-bit 24-bit
Tests Yield | U-value| Yield | U-value | Yield | U-value
Frequency 0.9917 0 0.9917| 0.00001| 0.9917| 0.87553
Block freq. 0.9917 0 0.9917| 0.07808| 0.9833| 0.32418
Cumulative 0.9917 0 0.9833| 0.00002| 0.9917| 0.60582
Runs 0.9917 0 0.9833| 0.22286| 0.9917| 0.06688
Longest run | 0.9917 0 0.9833| 0.11651| 0.9750| 0.26445
Rank 0.9667| 0.15520| 0.9917| 0.46859| 0.9833| 0.84858
FFT 0.9667| 0.94960| 0.9750| 0.08217| 0.9750| 0.88813
Nonoverlap: | 0.9827| 0.03304| 0.9813| 0.43792| 0.9827| 0.50418
Overlap. 0.9917 0 0.9750| 0.37813| 0.9750| 0.46859
Universal 0.9917| 0.01791| 0.9833| 0.45279| 0.9833| 0.87553
Apen 0.9917 0 0.9917| 0.80433| 0.9750| 0.99820
Random €. 0.9981| 0.23156| 0.9983| 0.31502| 0.9834| 0.37574
Random e.v. | 0.9924| 0.06688| 0.9919| 0.00348| 0.9919| 0.03978
Seriaf 0.9917| 0.00232/.0.9875]-0.43128| 0.9833| 0.83925
Linear Comp.| 0.9833]0.33716/-0.9917-0.75647| 0.9917| 0.98503
[FailCount | 0 [ .7 -] 0.7 0.2 0 0

*average result of multiple tests;is Shown.

reported by the literatures. In Table:3.4; test results fomsbladVLM are compared with
those forClassical Logistic MapLi's [12]- systemRHCS[15] andAddabbo’q14] system

in terms of the number of failed tests. The test suites and the number of tests are shown in

the first row. The column$recisionandOutput Widthshows the precision of system and

number of bits of one output, respectively.

With the scrambling functionyLM has least number of failure counts both in single

bit output and multiple bits output. It shows that the scrambléi! has good quality

of randomness. In row 4,i's system can improve the randomness when compared with

classical logistic mappshowed in row 3 but still fail theCrushand BigCrushtests. The

results ofAddabbo’ssystem are shown in row 5. Although a singlédabbo’ssystem has
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Table 3.4: Failure counts in statistical tests for different systems.

Prec-| Out | SP800| Smalt | Crush| Big-

ision | -put -22 | Crush | (144) | Crush
Systems Width | (15) (15) (160)
scrambled VLM 32 1 0 0 3 8
classical logistic map 32 1 9 15 140 155
Li's [12] 32 1 1 15 144 156
Addabbo’s [14] 31 1 2 14 122 141
Addabbo’s [14} 32 1 0 0 3 15
scrambled VLM 32 32 0 0 1 5
RHCS [15] 32 24 0 0 25 59
MVLM(2) 32 32 0 0 0 0
MVLM(3) 32 32 0 0 0 0

*A combined 32-bit system by a 17-bit and a 15-bit subsystems.
A hyper-chaotic system coupled by two 32-bit RLMSs.

less implementation cost and passes most tests in SP800-& lofs of tests in TestU01
testing suites. In row 6, the results for combined Addabbo’s system of 17-bit and 15-bit
sub-systems are also included. In ronRKCSpasses tests in SP800-22 but fails several
tests in TestuO1. Finally, to verify-the statistical properties of MVLM, results for MVLMs
coupled by two 32-bit VLMs (labeletMVVLM(2)):and three (labeletMVLM(3)) are pre-
sented. As presented in rows 8 and 9; MVLMs can pass all tests in all test suites when the
number of coupled systems is more than 2. This statistical testing result shows that both

scrambled VLM and combined Addabbo’s systems have well statistical properties.

3.4.5 Reconstruction complexity

Since Adddabbo’s system shows the best statistical property among all previous work, we
will compare VLM and Addabbo’s [14] system in reconstruction complexity. Addabbo’s

system is based on Rényi map which is a linear chaotic map. Addabbo’s system is a good
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pseudo random number generator because the system generates output sequence with well
guality of randomness and maximum cycle length at low hardware cost. However, the
system may be not suitable to apply in secure communications directly.

The firstreason is a small set of parameter space. With particular parameters, Addabbo’s
system generates output sequence with maximum cycle length. The restricted parameter
space reduce the complexity of cryptoanalysis. The second reason is the linearity of Rényi
map. Since the piecewise-linear map has the same slope everywhere in each subinterval,
the Lyapunov Exponent, topological, metric, and Rényi specific entropies are all equal. On
the contrary, VLM is based on a piecewise and non-linear map which is different from
piecewise-linear map in non-linear senses. These linearity properties can be further ana-
lyzed. For example, the autocorrelation function is calculated for 10,000 sequential states
on trajectories of a 31-bit Addabbo’s system and a 32-bit VLM, respectively. As shown in
Figure 3.15(a), Addabbo’s system-has relative high correlations between sequential states
when —25 < Lag < 25. On the:contrary, in Figure 3.15(b), VLM has no peak value
exceptLag = 0. The high correlation among:sequential states will become a flaw which
can be utilized to reconstruct the ‘'system when .sequential states are used as system out-
puts directly. Although the correlations can be reduced by avoiding using sequential states

(skipping several states), the system will-suffer from short the length of output cycle.

3.5 Hardware Architecture of MVLM

In this section, we show implementation of MVLM in hardware. We describe our designs
in hardware description language (HDL), and then synthesize them by commercial tools.
To be more specific, designs are written in Verilog and synthesised by Synopsys Design
Compiler (Version X-2005.09-SP4) with TSMC8um technology library. Area and tim-

ing information is obtained in gate-level netlist. Figure 3.16 shows the block diagram of the

core to compute a singlé LM (v, z). The block,zero detectocomputes two functions.
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The first is to sety[31] = 0 and~([32] = 0 to satisfy the constraint that*y should be a
multiple of four. The second is to prevent VLM from generating all zero output sequence
by assigning-[30]=1 wheny = 0. Afterwards, the blocks denoted byuncation, are used

to implement the modular and truncation operations to keep the product in 32-bit precision.
Since the truncation operation ¥L.M drops the most significant 16 bits during multipli-
cation, (i.e., the logic circuit for these bits are no longer needed and can be removed), only
24 x 32 multiplier is required as comparedi x 32 multiplier needed by classical logistic
map. Moreover, a 32-bit subtractor is used to compute z;).

The components for data-path in a scramblédl and other systems are compared in
Table 3.5. In our VLM, twa24 x 32 multipliers are required. One comparator is used to
check the input: and~ are zero or not, and one LFSR is used for the scrambling function.
After synthesizing logic equation to gate-level netlist, the comparison of area cost in terms
of gate counts for a scrambl&d-M and other systems are shown in Table 3.6. The area
cost of VLM is smaller tharclassical logistic. mafpecause the multipliers usedW.M is
smaller than that used tlassical logistic mapFrom-{12],-the gate-count fdri's system
is calculated by total gate area divided by a'two-input NAND gate which is equal to 9.98
um?(The same implementation‘technology as:ours). ComparedLwittsystem,V LM
is operating at lower frequency, but has-smaller.area and more complex output sequence.
When compared to a single modified logistic m&bi) [15], VLM has smaller area cost
and higher throughput because one multiplier is removed as described in Section 3.1. The
hardware cost cAddabbo’ssystem is not available, but we believed tAdtdabbo’ssystem
has the smallest area cost since only one multiplier is required. Compareddud#iobo’s
systemVLM has more complex statistical properties with reasonable area overhead.

Furthermore, for MVLM implementation, Figure 3.17 shows the data-path architecture
of a MVLM with m = 4. The data flow of the system is partitioned into 4 stages separated

by registers denoted by black blocks. Table 3.7 shows the synthesized results including
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Table 3.5: The components for data-path in VLM and other systems.

classical Li's Addabbo’'s| RLM
VLM logistic map [12] [14] [15]
multiplier | 2(24x32)| 2(32x32) 1(32x32) 1(31x31) | 3(32x32)
counter 0 0 1(10-bit) 0 0
comparator| 1(32-bit) 0 1(10-bit)+1(32-hit) 0 2(32-bit)
LFSR 1(32-bit) 0 0 0 0

Table 3.6: The synthesis result for VLM and other systems.

\ | VLM | classical logistic mag Li[12] |

Technology/(:m) .18 .18 .18
Area(#gate-count) 15697 20167 20075
Clock Frequency(Mhz) 100 100 200
Bits/Cycle 32 32 1
Bits/Second(Mbps) 3200 3200 200
Area Ratio 1 1.28 1.27
Throughput Ratio 1 1 0.06

control circuit form = 1 to 4./ The area-and throughput BHCS[15] coupled by two
32-bit RLMs are also reported. When compare®RtdCSwhich is coupled by 2 RLMs, a
MVLM with m = 2 has smallerarea and higher throughput because of the proposed VLM
reduces the number of multipliers-in-the data-path. Moveover, MVLM with= 2 has
better quality of randomness. The experimental results also show that the area of a MVLM
is increased linearly with the number of VLMs. The system can be easily scaled up to
higher degree.

To end this, we know that the statistical test results show that the output sequence gen-
erated byWLM in 32 bits per cycle can pass all tests. Moveover, under 100 Mhz operating

frequency, VLM achieves 3,200 Mbps throughput, which is the best in all systems.
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Table 3.7: The synthesized result of MVLM, and RHCS+/#or= 1to 4

\ Number of VLMs(n) \ 1 \ 2 \ 3 \ 4 H RHCS [15} \
Technology(:m) .18 .18 .18 .18 .18
Area(#gate-count) 15732| 31655 | 46910 | 62223 37741
Clock Frequency(Mhz) 100 100 100 100 100
Bits/Cycle 32 32 32 32 24
Bits/Seconds(Mbps) | 3200 | 3200 | 3200 | 3200 2400
Area Ratio 1 2.01 | 298 | 3.96 2.39

* A system coupled by two 32-bit RLMs [15].

3.6 Summary

A new chaotic map, VLM, has been proposed to have large parameter space without
windows and high throughput in low hardware cost. A 32-bit VLM with the proposed
scrambling method can pass all tests-in SP800-22 and the most stringent statistical testing
suite in TestU01. With up to 3,200.Mbps throughput and complex output properties, VLM

is suitable for security applications.- We,also shewed a chaotic cryptographical scheme,
MVLM, constructed by multiple VLMS.: In-an.embodiment, by coupling four 32-bit VLMs,

the MVLM generates the output sequence with,a minimal length eqaélte- 1 by a 128-

bit external key.
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Figure 3.15: Autocorleation functions for (a) a 31-bit Addabbo’s system, and (b) a 32-bit
VLM.
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Chapter 4

Randomness Enhancement Using
Digitalized Modified-Logistic Map

Pseudo Random Numbers Generators (PRNGs) are widely used in many applications, such
as numerical analysis, integrated circuit testing, computer games and cryptography. The
quality of randomness is usually the main criteria to distinguish different PRNGs. Besides
the quality of randomness, implementation-cost and throughput are also important factors
to evaluate the effectiveness of ‘PRNGs'.in applications such as modern-communication
protocols.

Previous research on PRNGs'can be classified into two approaches: linear and nonlin-
ear. While linear approaches have the advantage of high throughput and low implemen-
tation cost, they suffer a low quality of randomness. Nonlinear approaches can be used
to enhance the randomness properties but some of them require more hardware or more
processing time.

Among other nonliner approaches, chaotic map based PRNGs have been proposed [12—
14]. Moreover, in recent years non-quantized chaotic maps have been used for generating
true random numbers [35].

In [12], Li et al. proposed a logistic-map based PRNG with timing-based reseeding

method which replaced the last five least significant bits of the output sequence by a fixed
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pattern when a period of time is reached. Although Li's system [12] improves the ran-
domness quality of the output sequence when compared with a classical logistic map,
Li’'s system still has some statistical weak points in testing results of SP800-22 [30] and
TestUO01 [31].

In [14], Addabboet al. proposed a low-hardware complexity PRNGs based on a
piecewise-linear Rényi map. By utilizing the nonlinear property during truncation, Addabbo’s
system extended the period of Rényi map with the length W¥te 1. The authors also
provided a method to combine two subsystems to form a system that has the maximum
global cycle length and good quality of randomness. One disadvantage of the system is
that it is not easy to scale the system to high precision. The first reason is that the maxi-
mum cycle length of output sequence depends on values of parameters which are not easy
to find. Second, the quality of randomness is not predictable even when system precision is
increased. For example, in [14]; a 24-hit system.can pass statistical tests in SP800-22 but a
31-bit system which is the largest precision reported in [14] fails 2 of 15 tests in the same
test suite.

In this chapter, we propose 'aPRNG which is based on a Digitalized Modified-Logistic
Map (DMLM). Similar to [23] and {15], DMLM is-defined iny > 4 to extend the parame-
ter space. It is shown that the modified-logistic map is a pseudo-chaotic map with larger
parameter space as compared with a classical logistic map [23] and is suitable for security
communications [15]. However, high implementation cost renders it an un-suitable PRNG.
We will propose two techniques, constant parameter selection and output sequence scram-
bling, to reduce computation cost without sacrificing the complexity of output sequence.
Moveover, we show that it is easy to extend the precision of DMLM-PRNG.

The statistical test results show that with only one multiplication, our system passes all
cases in SP800-22 [30]. Moreover, it passes most of casesush one of test suites of

TestUO01 [31], while Li’s [12] and single Addabbo’s [14] systems fail almost all cases.
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The rest of this chapter is organized as follows. In Section 4.1, the Digitalized Modified-
Logistic Map based PRNG (DMLM-PRNG) is presented. The parameter selection, scram-
bling method and implementation issues will also be discussed. In Section 4.2, we will
compare DMLM-PRGN to other pseudo-chaotic map based PRNGs with respect to sta-
tistical properties, implementation cost and throughput. Finally, concluding remarks are

given in Section 4.3.

4.1 Modified Logistic Map based PRNG
4.1.1 Digitalized Modified-Logistic Map

We know that a classical logistic map,.; = vyz;(1 — z;), wherex € [0, 1], presents chaos
when3.57 < v < 4. To usey > 4 and to digitalize a logistic map, we definegit
Digitalized Modified Logistic Map (DMLM)-by

iy 7l (L ) med 1 ), (4.1)

where the operatiom;(mod 1), is usedto keepbetween [0,1) by dropping the integer part
of z, and|z |, is a truncation function to-preserve the most significabits of z and drop
others. Furthermore, @bit binary numbet: in-{0,1) ¢an be presented hy= " 277z[j],
wherez[j] is thej-th bit of z. It holds thatz; in Equation (4.1) is g-bit binary number.

We verify pseudo-chaotic properties of DMLM by numerical experiments including
bifurcation analysisanddiscrete Lyapunov ExponefdLE) [17].

First, the bifurcation analysis is performed on 10@0evenly selected in < v < 26
for a 32-bit DMLM. In our experiment, we do not detect any short-periediedowsin
1000-s.

Second, theliscrete Lyapunov Exponer(@LES [17] for DMLM is calculated, where

the basic expressiafLEsis defined as
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Figure 4.1: The discrete Lyapunov ExponemtsEs of a 32-bit DMLM for (a)2.8 < v <
4, and (b4 < v < 216

1, d(F(M), F(M,)
)\F = E ; ln d(M:_H, MM) . (42)

M is a finite subsegment of the trajectory in:lengthfor a digitalized mapF’, and
d(M,, M,) is the distance betweeW,, and M/, whereM,, and M, are inM.

Figure 4.1 showslLEs for two different ranges-ofy. .For each range, 100§s are
selected evenly. For each 1000 different initial:conditions of, are given to generate
1000 different subsegments, and in.each segment, A08Gre computed (i.en = 1000).
Then, the averag@LE is reported.

As shown in Figure 4.1(a), wheh8 < v < 4, dLEsfor DMLM are non-positive in
someys. These non-positivdlEsresult from the use of parametersmmdows However,
as shown in Figure 4.1(b), when > 4, all dLEsare positive. These numerical results
indicate that DMLM presents pseudo-chaos with large parameter spacevhen

To apply DMLM in a PRNG, we will further define the value of The objectives are
twofold: low-cost computation and randomness quality. To reduce the computation cost,
we focus on the subset gfwherey = 2. In this case, only one multiplication is needed to

compute the orbit because the multiplicatiomof 2* only requires a shifting operation.
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Next, to increase randomness quality, we start from the point of implementing the mul-
tiplication in finite-precision arithmetic. Because the multiplication is defined in finite pre-
cision, truncation is needed after multiplying two numbers to store a product in the same
number of bits. Let be the2¢-bit result ofz,;(1 — z;). Equation (4.1) can be rewritten by
xis1 =clk+1:k+q]for0 < k < ¢. To have a uniformly distributed,, ;, £ should
be close to] so that middle bits ofc are preserved after truncation. (The reason will be

explained in the next subsection) Hence, @it DMLM is reduced to
DMLM (z;) = [[2"212;(1 — ;)](mod 1) | . (4.3)

The sequence generated by DMLM is definedchyy = DM LM (x;).

In hardware implementation, multiplyirtj2! can be implemented by a shift operation.
Now, DMLM requires only one multiplication. Moreover, in Section 4.1.4, we will show
that DMLM can be implemented-at lower-cost.as compared with a classical logistic map.

We analyze the spectrum of the trajectory-generated by a 32-bit DMLM. First, in Fig-
ure 4.2(a) we plot the trajectory-with 10,000 outputs. The result shows that the trajectory
is visualized randomly. In Figure 4.2(b), the spectrum analyzed by FFT shows that the

trajectory is broad-band or pseudo-random:.

4.1.2 Scrambling Method

It is known that the length of an orbit generated by a digitalized pseudo-chaotic map is far
below the total number of states. For example,gt(0.10001000) 4, the length of the
orbit generated by a 32-bit DMLM is 21,998 and by a 32-bit classical logistic mag)(
is 29,551. It is obviously insufficient if a long random number sequence is required. As
discussed in Section 3.2, to increase the cycle length, the method to scramble several least
significant bits is useful and widely used [5, 12, 34].

Similar to [36], we use a LFSR to scramble the output of DMLM. Figure 4.3 shows the

proposed scrambling strategy, wherés ag-bit primitive LFSR and is a one-step delay
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Figure 4.2: (a) Output value plotting, and (b) Spectrum analysis of a trajectory generated
by DMLM with z,=(0.0f5a5a00) z:

block. The noise sequence generatedihy = L(n;)is xor-ed withz; ., to producez;
beforez;; is fed back to DMLM: The:low bound-of cycle length of the scrambled system
is analyzed as follows. The low: bound of the cycle length of output sequence is specified
by A - (2! — 1), whereA and! are the scrambling period and the register length of a LFSR,
respectively. As discussed in Section 3.2, to have the maximum output cycle length, we let
A = 1andl = ¢q. Hence, the low bound of cycle length will Be—1. The overhead of the
scrambling function is g-bit LFSR.

An experiment is conducted to show that a 32-bit scrambled DMLM has uniformly
distributed outputs by measuring the 1's probability of the most significant bit dfere,
the length of each sequenceli§® bits. Figure 4.4 shows that the 1's probability of the
output sequence is close go/vhen the period), is decreasing.

Since the LFSR and DMLM are not functionally independent, the transition behavior
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Figure 4.4: 1's probability with different scrambling periods.

of the LFSR and DMLM will affect the distribution of;,. The transition behavior of the

scrambled system will be analyzed in the next subsection.

4.1.3 Property of the System

In this section, we will show that our constant parameter selection together with the scram-

bling method can produce uniformly distributed outputs, which is an important property of

random number generators.

Our scrambled system can be defined as follows.
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Definition 1. Let z;, x;, andn; be¢-bit binary numbers. Lef’ and L be a pseudo-chaotic
map and a primitive LFSR, respectively. bet, = F(z;) andn;,; = L(n;). The scram-

bled system is defined by, , = D(z;,n;) = F(Z;) ® L(n;).

Notice that in Definition 1F'(z;) and L(n;) are functionally dependent and potentially
statistically dependent. Although(n;) is uniformly distributed,F(z;) & L(n;) is not
always uniformly distributed.

Assume thaf z;[/]}i>o IS selected as the binary output sequence. The objective is to
prove that a uniformly distributed sequen¢g;[;j]}:~o, iS generated by the given system.

Let the state transition probability matrix éf : z;[j] — z;41[j] be

dOO le
TH = ’ ’ 4.4
. { e d] (4.4)

whered,,, = P(z;1[j] = v|7:[j] = w); for puyv=.0, 1. We define the fix-point condition
for the discrete Frobenius-Perron-equation for-the transifi@as equation,
p= T sope=lpopd’ (4.5)
wherep,, = P(z;[j] = p) is the state probability fos = 0, 1.
For a uniformly distributed sequencgr(|ijl}i<o), p in Equation (4.5) should be equal

to[L 117,

[N

1
2

The sufficient conditions for Equation (4.5) with= [1 ]” are discussed in the fol-

11
22
lowing properties.

Property 1. If n;[j] andz;[j] are statistically independent, then Equation (4.5) holds with

p =[5 3]". Also, T is a matrix with all entries equal tg.

Proof. Let T and Ty are the state transition probability matricesrot z;[j] — z;11[j]

andN : z;41[j] — Zi11]j], respectivelyT» andTy can be defined as follows.

Ty = { Joo fi0 } and Ty = [ No,0 M1,0 } 7 (4.6)

fo,l f1,1 Np1 N1
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where f,, = P(zinlj] = v|zi[j] = p) andn,, = P(@ialj] = vizia[j] = p) for
w,v=0,1.

We can rewrite Equation (4.5) hy = (Ty x Tr) x p. Becausel(n;) is uniformly
distributed,n,,, = 1 for y,v = 0,1. Moreover, we know thafo, + fo1 = 1, and
fio+ fin = 1. Thus,Tp is a matrix with all entries equal . This impliesp = [3 3|7 is

the stable probability of . O

Property 2. If z;[j] and x;[j] are statistically independent, thex[;j] andz;[;] are statisti-

cally independent. Therefore, the assertion of Property 1 holds.

Proof. From the assumption, we see thatz;) is a fully disturbing channel which can
remove any statistical dependence betwegf} andz;[j]. Furthermorep;[j] andx;[j] are
statistically independent. If;[j] is uniformly distributed, them,[j] andz;[j] are statisti-
cally independent, which follows from the balanced property of the XOR operation. Thus,

the assertion of Property 1 also holds: 0J

According to Property 1 and 'Property 2, to:-have uniformly distributed outputs for the
scrambled system, DMLM £(z;)) should be a fully disturbing channel to remove any
correlation betweef;[j] andx;[j], Thatis, transition probability df » should be uniform.

In Equation (4.1);y is equal to2*. The.objective of our constant parameter selection
is to find ak so that the transition probability of Equation (4.1) is close to uniform. Let
x, = (1 — ;) andc be the2¢-bit result of z; x z,. Equation (4.1) can be rewritten by
xis1 =clk+1: k+¢|for0 < k < q. Considering a case whet€q| is selected as
the output sequence. SincRq| = z;[q] x x}[q], ¢[2q] is equal to 0 whem;[¢] is 0. The
high correlation betweet{2q| andz;[¢] results in a non-uniform transition probability and
makesc[2q] a un-suitable output candidate. Similarly, high correlation exists between the
most significant bits of (c[1]) andx; (z;[1]).

On the contrary, middle bits af computed by more number of partial products (as

73



compared to the most/least significant bits:pénd carry-in bits depend on each bit.of
more uniformly.

An experiment is conducted to understand correlations between hitaraf z; with
g = 32. The state transition probability matrix going from th#h bit of x; (x;[t]) to the
j-th bit of ¢ (c[4]) can be defined by a 2-by-2 matri¥, where the entry gt-th column
andv-th row shows the probability, , = P(c[j] = v|z;[t] = 1), wherey, v =0, 1.

The following equation is used to measure the maximum distance begWeemd%

for eachT for different values of and;.

1
Pmaz = Max (| fu, — 5\), (4.7)

wherep, v =0, 1.

The smallep,,.. is, the more uniform transition probabiliff= has. Two sets 0f,,,..
are calculated. The first one ig!.- which is the transition probability from the most
significant bitx;[1] to c[;] for-1 < j*<-32. The second one is- . which is the transition
probability from the least significant bit;[32] to ¢[j] for 31 < j < 63. As shown in
Figure 4.5, andpl  are decrfeasing whenis close to 32. It shows thg}, , is close
to - when middle bits of: are selected. Please be noticed that,s smaller thari0~6 are
not shown in the graph.

Note that, the above discussion is still empirical because the result shown in Figure 4.5
is not a rigid statistical analysis. However, the discussion could provide some insights into
this special case of pseudo-random number generation.

Hence, to have uniform transition probabilities framto x;,, for Equation (4.1) %
should be close t§ to preserve middle bits of the product after truncation. We know that
our constant parameter selection for DMLM will produce more uniformly transition prob-
abilities. With our constant parameter selection and the scrambling method, the DMLM-

based PRNG, DMLM-PRNG, can generate uniformly distributed outputs.
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Figure 4.5: (a2 for1 < j <32, and (b)pL,, for31 <;j <63

4.1.4 Implementation

We take a 32-bit DMLM-PRNG as an example to show the efficiency of our DMLM-PRNG
implementation. The structure of DMLM-PRNG-is shown in Figure 4.6. The DMLM-
PRNG is divided into two moduleBMLMCoreandScraFunc The first moduleDMLM-
Core, generates state value of DMLM. The second modatEaFun¢ scrambles the state
value by a noise generated b{¥SRL). The scrambled state value will be fed back to
DMLMCore Finally, OUT is the output generator which selects the most significant bit of
Z;+1 to be the random number sequence.

The current state value of DMLM-PRNG is stored in a 32-bit regiS&teREGA 32-
bit subtractor is used to computé — z;). To compute the next state, only one multiplier
is needed for;(1 — z;). Operations to multipl2!¢ and truncate the result af(1 — z;)
to 32-bit are implemented by signals selectionfmnOP. Since the truncation operation

drops the most significant 16 bits during multiplication (i.e., the logic circuit for these bits
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DMLMCore ScraFunc

Figure 4.6: Architecture of DMLM-PRNG.

are no longer needed and can be removed), the required area ishky & multiplier as
compared to the area of3@ x 32 multiplier heeded by classical logistic map. To compare
the area cost of DMLM used in.a 32-bit DMLM-PRNG and a classical logistic map, two
maps are implemented and synthesized with-TSNKLm technology library. Area and
timing information are obtained in gate-level netlist. The area cost in terms of number of
2-input-NAND gate is shown in Table 4.1. Under the same timing constraint, the area cost
of DMLM is 85.6% of that ofClassical Logistic Mapwith y=4. The detailed performance

evaluation of DMLM-PRNG will be discussed in the next section.

4.2 Performance Evaluation

In this section, we will compare DMLM-PRGN to other pseudo-chaotic map based PRNGs

with respect to statistical properties, implementation cost and throughput.
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Table 4.1: Comparisons of area and timing for 32-bit DMLM and classical logistic map in
hardware.

Area Data Arrival Time
Maps (2-NAND) (ns)
Classical Logistic Mapy=4). 10563 5.00
DMLM (~y=2'6) 9046 4.83

| DMLM/Classical Logistic Map| 85.6% | 96.6% \

Similar to Section 3.4.4, the same tools are used for statistical analysis. To evaluate the
randomness of our system, two test suites, NIST SP800-22 [30] and TestU01 [31] are used.
SP800-22 test suite has been the standard reference for PRNGs. We use SP800-22 as our
first randomness test. Then, to further compare the randomness among DMLM-PRNG and
other PRNGs, a more complex test suite, TestU01, is used for testing.

The configuration for SP800-22 test is as followss equal to 0.01 an@=120. Hence,

120 sequences will be generated by DMLM-PRNG with the length06fbits. Finally,
generated sequences are fed tothe test suite., Each test will proBued@efrom SP800-

22. P-valueshould be in range, [0.01, 1.00], to pass the test. As suggested in SP800-22,
for each test, the minimum pass-rate of a pseudo.random source is 0.9627 out of 120 binary
sequences. Thig-valueis also reported for the:distribution measurement of colleBted
values If U-valueis greater than0~*, then'the sequences can be considered to be a pseudo
random sequence with acceptable quality of randomness. Table 4.2 shows the parameter
configuration used in the following SP800-22 tests.

We first conduct an experiment to understand the quality of randomness of DMLM-
PRNG when system precision is increased. As shown in Table 4.3, systems in 20-bit,
24-bit and 32-bit are tested. When system precision is 20-bit, the proposed PRNG passes
all tests but has 4 failur&-values. However, when the system precision is larger than 24-
bit, DMLM-PRNG passes all tests in SP800-22 and has uniformly distritRrtealuesfor

each test. The experimental results show that the statistical properties of DMLM-PRNG is
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Table 4.2: Parameters for SP800-22.

Block freq. | m=128 Serial m=16

Longest run| M=10000 Apen m=10

Nonoverlap. m=9 Linear Comp. m=500
Overlap. m=9 Universal L=7,Q0=1280

becoming better when we increase the system precision. The LFSR used for scrambling
function is the only parameter needed to change. In this experiment, LFSRs for 20-bit,
24-bitand 32-bitare® + 2! + 28 + 2 + 210 + 23 + 1, 2 + 22 + 2t + 2P + 2B +

20 a4+ 2% + 2% + 1, anda®? + 222 + 220 4+ 21 + 213 4 2! + 1, respectively.

The discussion in Section 4.1.3 has shown that the middle bitsare those with the
best randomness properties. We compare the randomness properties of two cases, where
the first bit and the 16th bit of; are respectively selected as output sequences. When the
precision is 20-bit, the failure-count 6f-value-is indeed reduced from 4 to 2 for the middle
bit case.

To show the improvement of randomness quality by DMLM-PRNG as compared to
other systems, three testing suites, SP800-22 SmallCrush Crushin TestUO1 [31] are
applied. Recommended by TestU@mallCrushncluding 15 sub-tests is taken as a fast
check for the basic randomness requirement. Néxt,sh needs2® output sequences to
perform further 144 tests. For each tesR-@alueis calculated. IfP-valueis out of the
range, [0.001, 0.9990], the sequence fails the test.

1). Randomness improvement by scrambling function.

To understand the efficiency of the scrambling function in DMLM, tests with/without
scrambling function are performed. The failure counts of tests in different testing suites
are shown in Table 4.4. Without scrambling function, DMLM fails some tests because the
short output length. On the contrary, with scrambling function, 32-bit DMLM pass all tests
in SP800-22SmallCrushand almost all tests i@rushtest suites.

2). Comparison with previous work.
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Table 4.3: Testing results of DMLM-PRNG in different precisions by SP800-22.
20-bit 24-bit 32-bit

Tests Yield [ U-value| Yield | U-value| Yield | U-value
Frequency 0.9917 0 0.9917| 0.15520| 0.9917| 0.00619
Block freq. 0.9917 0 0.9750| 0.02381| 0.9750| 0.33716
Cumulative 0.9917 0 0.9791| 0.31171| 0.9917| 0.46264

Runs 0.9833 0 0.9917| 0.28730| 0.9917| 0.12837
Longestrun | 0.9833| 0.09561| 0.9833| 0.50093| 0.9917| 0.88813
Rank 0.9833| 0.00699| 0.9917| 0.42203| 0.9833| 0.46859
FFT 0.9750| 0.25355| 0.9667| 0.50093| 0.9750| 0.16260
Nonoverlap® | 0.9791| 0.23426| 0.9805| 0.48152| 0.9816| 0.49706
Overlap. 0.9833| 0.00095| 0.9667| 0.98088| 0.9917| 0.80433
Universal 0.9667| 0.01341| 0.9833| 0.23276| 0.9833| 0.32418
Apen 0.9833| 0.36414| 0.9833| 0.00887| 0.9833| 0.48464

Random €. 0.9928| 0.41009| 0.9834| 0.29321| 0.9945| 0.14739
Random e.v. | 0.9968| 0.08301| 0.9877| 0.00788| 0.9983| 0.00131
Seriaf 0.9875| 0.63531| 0.9833| 0.39006| 0.9833| 0.28810
Linear Comp. | 0.9917 | 0.60245| 0.9833| 0.78872| 0.9667| 0.00836
FailureCountsy 0 | 4| 0} -0 [ 0o | o0 |
*average result of multiple tests is.shown:

In Table 4.5, test results for 32-AIMLM-PRNGare compared with those f@lassical
Logistic Map Addabbo’s[14] system, and.i’'s [12] system. For Addabbo’s system, the
precision for the experiment is 31-bit because it is-the largest precision reported in [14]. In
the last row, the results for combined Addabbo’s system of 17-bit and 15-bit sub-systems
are also included. This table shows that both DMLM-PRNG and combined Addabbo’s
systems have good statistical properties.

3). Adding Scrambling function to other systems.

The total numbers of states in each testing system are different. For example, DMLM-
PRNG has 64-bit (32+32-bit LFSR) states and Li’s has 42-bit (32+10-bit counter) states.
In order to provide each system comparable number of states, the scrambling function is ap-

plied to other systems in the same way it is applied to DMLM-PRNG. In Table 4.6, testing
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Table 4.4: Randomness improvement by scrambling function in terms of failure count in
statistical tests.

Scrambling| SP800-22| Smalt | Crush
Function (15) Crush | (144)

System (15)
W/O 9 14 139
DMLM WIT 0 0 3

Table 4.5: Failure counts in statistical tests for different systems.

Prec-| SP800-22| Smalt | Crush

ision (15) Crush | (144)
System (15)
DMLM-PRNG 32 0 0 3
Classical Logistic Map 32 9 15 140
Addabbo’s [14] 31 2 14 122
Li's[12] 32 1 15 144
Addabbo’s [14](combined) 32 0 0 3

results show thatlassical Logistic-Ma@ndLi’'s systems still fail lots of tests even when

the number of registers is doubled. Moreovea's system is worse than its non-scrambling
version. Similar tdDMLM-PRNG Addabbo’ssystem can improve the quality of random-
ness by scrambling. The table also shows Bigil.M-PRNGperforms slightly better than
Addabbo’ssystem in terms of failure-count. The row labeled Addabbo’s [14](combined)
shows the results of the system which'is also a kind of scrambled system combined with
a 15-bit and a 17-bit Addabbo’s systems. It shows that the randomness is the same with
ours system. Nerveless, for the combined system, the system precision (cycle length) is not
easy to extend and also the quality of randomness is not predictable. Moveover, results for
a non-scrambled 64-bit classical logistic map is also reported in the row laB&eslical
Logistic Map (no-scr.) It shows that the quality of randomness can be improved by preci-
sion increase (see a 32-bit version in Table 4.5), but the trajectory of a digitalized logistic
map eventually enters a loop with unknown length. The quality of randomness of a 64-bit

classical logistic map is worse than that of DMLM-PRNG in terms of failure count.
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Table 4.6: Failure counts in statistical tests with scrambling function.

Number of| SP800-22| Small | Crush

Registers (15) Crush | (144)
System (15)
DMLM-PRNG 32+32 0 0 3
Classical Logistic Map 32+32 8 14 124
Li's [12] 42+32 12 13 123
Addabbo’s [14] 31+31 0 1 14
Addabbo’s [14](combined) 15+17 0 0 3
Classical Logistic Map (no-scr.) 64 0 0 27

The transition probabilities of Addabbo’s system are close to uniform while those of
classical logistic map and Li’'s systems are not. Hence, when the scrambling function is
used, it results in good result for Addabbo’s system but worse statistic properties in classical
logistic map and Li's systems.

The last experiment is to comparethe-components with respect to data-path for DMLM-
PRNG and other systems. In order to compare systems in the same process technology, our
system is synthesized with UMC, A8 technology. The timing and area information are
reported with gate-level netlist.__As ‘shown in Table 4.7, in a 3Z2LM-PRNG one
24 x 32 multipliers and a 32-bit' LESR-are-required. -From [12], the gate-counkifer
system is calculated by total gate area-divided by a 2-input-NAND gate which is equal to
9.98./m?2. The comparison of area cost in terms of gate count®MLM-PRNGand other
systems are shown in the column denotedApya The last columnThroughPut/Area
shows that the area efficiency DMLM-PRNGis 200% of that oLi’'s system.

Compared withLi's system DMLM-PRNGhas smaller area and more complex output
sequence with the same throughput. As comparettittabbo’ssystem DMLM-PRNGis

easy to scale to large precision with reasonable area overhead.
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Table 4.7: Comparisons of data-path components, area, and throughput.

Multi- Count- | LFSRs | Area Throu- | Throu-

pliers ers (2- ghPut | ghPut/
PRNGs NAND) | (bits/sec)| Area
DMLM-PRNG | 1(24x32) 0 1(32-bit) | 9517 180M 0.018
Li[12] 1(32x32) | 1(10-bit) 0 20075 200M 0.009
Addabbo [14] | 1(31x31) 0 0 N.A. N.A. N.A.
Addabbo [14] | 1(15x15),
(combined) 1(17x17) 0 0 N-A. N-A. N-A.

*multiplier with the same area cost.

4.3 Summary

In this chapter, we have proposed a nonlinear, Digitalized Modified-Logistic Map based
Pseudo Random Number Generator. (DMLM-PRNG). With our constant parameter selec-
tion and scrambling method, DMLM=-PRNG: has. output sequence with good randomness
quality at low implementation cost. - Statistical test, results have shown that the random-
ness quality of DMLM-PRNG is as.good'as Addabbo’s [14] combined system and better

than Li's [12] system. Moreover; our system has:shown better scalability than Addabbo’s
system.
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Chapter 5

Conclusions

In this dissertation, we have proposed several modified logistic maps for secure commu-
nications and pseudo random number generation. To increase the number of parameter, a
Robust Logistic Map (RLM) is proposed far > 4. As compared to a classical logistic
map, the parameter space is large.enough forthe security applications. Based on RLM,
a Robust Hyper-Chaotic Encryption-Decryption ‘System (RHCS) is proposed for digital
secure-communications. By couplimgRLMSs, a RHCS has large parameter space and
high complexity output. Moreover, RHCS!' is: difficult to re-construct. We have shown
that the output sequence of RHCS has:good quality of randomness for secure communica-
tions. The example of implementation-demonstrates that the proposed multiple-cycle and
pipelined architectures are effective for area and performance optimization, respectively.
Second, we proposed a Variational Logistic Map (VLM) to reduce the computation cost
and improve the quality of randomness of RLM. VLM has large parameter space without
windows. Moreover, it has high throughput with low hardware cost and good quality of
randomness. A 32-bit VLM passed all tests in SP800-22 and the most of tests in the strin-
gent statistical testing suite in TestU01. With up to 3,200 Mbps throughput and complex
output properties, VLM is suitable for high throughput secure communications. Further-
more, we proposed a chaotic cryptographical scheme, MVLM, constructed by multiple

VLMs. In an embodiment using four 32-bit VLMs, the MVLM generates the output se-
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guence with a minimal length equal26?® — 1 by a 128-bit external key.

Finally, for pseudo random number generation, we have proposed a nonlinear, Digital-
ized Modified-Logistic Map based Pseudo Random Number Generator (DMLM-PRNG).
To reduce the computation cost without reducing the quality of randomness, we proposed
two techniques, constant parameter selection and output scrambling, for DMLM-PRNG.
The properties of the scrambled system indicated that our DMLM-PRNG can generate uni-
formly distributed outputs. Statistical test results have shown that randomness quality of
DMLM-PRNG is as good as Addabbo’s [14] combined system and significantly better than
Li's [12] system with smaller area cost. Moreover, our PRNG has better scalability than

Addabbo’s system.

5.1 Future Work

In this dissertation, our proposed systems have: large parameter space and good quality of
randomness with low computation cost. The proposed scrambling method is suitable for
our systems to increase the output cycle length and the quality of randomness. The further
cryptoanalysis on our system will'be conducted:

We also shown the property, that the transition probabilities of the chaotic map should
be uniformly distributed to have uniformly-distributed outputs for the scrambled system.
Based on the property, we can further analyze the transition behavior of different chaotic
maps and the scrambling function.

Moreover, optimization of the hardware architecture for our system will be studied.
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