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摘要 

 

混沌系統具有不規則，非周期性，無法預測和對於初始條件相當敏感的特質。而

這些特質符合與密碼學上混亂和擴散的特性。因此，近年來混沌系統在密碼學上

的應用被廣泛的討論與研究。然而，當混沌系統數位化的過程中，原先所保有的

混沌特質產生了變化，這種現象又稱為動態特性的降低。一個明顯的例子就是數

位化的混沌系統容易產生出一個短周期的輸出軌道。而一個短周期的軌道在統計

學的角度上則是容易被分析且不適合應用於密碼系統。在這一篇論文中，我們將

研究動態退化的現象並且提出數個方法來提升數位化混沌系統的隨機品質。主要

的研究內容如下。首先，我們提出了強化型邏輯映射混沌系統。此系統擁有比傳

統邏輯映射混沌系統更大範圍的可用參數，而且這個可用參數範圍內不會存在短

周期的參數。基於強化型邏輯映射混沌系統，我們更提出了強化型多維度混沌系

統，使其具有更多的可用參數來應用於安全傳輸系統。第二，我們提出了變化型

邏輯映射混沌系統。此系統明顯的增加了單位時間的輸出量與隨機品質。此外我

們串接數個變化型邏輯映射混沌系統來建立多變化型邏輯映射混沌系統，使其可

容易擴張，並可以快速的產生具有高複雜度與長週期特性的混沌數列。最後，在

本論文的第三部分則是針對偽隨機變數產生器應用提出了數位化變更型邏輯映

射混沌系統。在這個系統中我們使用了參數選擇與擾動技術，我們有效的減少了

系統的計算量並提高了輸出的複雜度。在現行的偽隨機亂數數列測試平台測試結

果顯示，相比於先前所提出的混沌偽隨機亂數產生器，我們的系統使用了較低的

硬體成本產生了較高隨機品質的偽隨機數列。 
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Abstract

The orbit of a chaotic system is irregular, aperiodic, unpredictable, and sensitive to initial

conditions. These characteristics coincide with the confusion and diffusion properties in

cryptography. In recent years, chaotic systems have been studied for secure communica-

tions.

However, when a chaotic system is digitalized, it results in some unexpected behaviors

due to limited precision. It is known as dynamical degradation. An obvious phenomenon

is that an orbit enters a cycle with unpredictable length. The orbit with short cycle length

has poor quality of randomness because it can be easily analyzed from statistical point of

view.

In this dissertation, we focus on improving quality of randomness for digitalized logistic

maps. New modified logistic map and techniques are proposed to improve the degree of

complexity for secure communications and pseudo random number generation. The main

achievements of this dissertation are as follows.

First, we propose a Robust Logistic Map (RLM) which has a larger parameter space

than classical logistic map. Moreover, there are nowindowswith short period-length in the

parameter space. Based on RLM, a Robust Hyper-Chaotic System (RHCS) is constructed

for secure-communication systems with large parameter space.

Second, we propose a Variational Logistic Map (VLM) to significantly increase the

throughout and quality of randomness of RLM. Moreover, a Multiple Variational Logistic

Map (MVLM) is proposed for fast chaotic sequence generator. Because of the regular

architecture of MVLM, it is easy to scale up the system degree to provide long output

sequence with high degree of complexity and large key space for secure communications.

Pseudo Random Number Generators (PRNGs) are often an important component in se-

cure communications. In the third part of this dissertation, we propose a PRNG based on

a Digitalized Modified Logistic Map (DMLM). Two techniques, constant parameter selec-

vi



tion and output scrambling are employed to reduce the computation cost and to increase the

complexity of the PRNG. Compared to previous digitalized chaotic systems based PRNGs,

our DMLM-PRNG has better quality of randomness and lower hardware cost.

Each of our system mentioned above has been implemented. Comparisons between

our systems and previous work are conducted in terms of hardware cost and throughput.

Moreover, the quality of randomness is demonstrated by statistical analysis.

vii



Chapter 1

Overview

Modern communication frameworks, such as Internet and mobile-phone networks, have

greatly increased the activities and possibilities of communications. With increasing com-

munication activities, the security issues become more and more important. Thus, a lot of

research activities focus on cryptographic techniques to provide secure communications.

A general secure-communication scheme is shown in Figure 1.1. In this scheme, mes-

sage is transmitted by theTransmitterthrough channels afterSource Encoding, Encryption

andChannel Encoding& Modulation. The Receiverrecovers the message by reversing

these steps.

Basically, the security of the communication is provided by the encryption of the mes-

sage. The encryption system scrambles the message so that it is unreadable by the non-

authorized opponent. Some secret information,key, is shared by theTransmitterand

the Receiverfor encryption and decryption progress. It should be unknown to the non-

authorized opponent. Depending on the management strategy of keys, crypto (encryption

and decryption) systems are typically cataloged into two types, thesymmetric(as known as

secret-key) crypto systems and theasymmetric(as known aspublic-key) crypto systems.

In the symmetric crypto system, such as Data Encryption Standard (DES) and Ad-

vanced Encryption Standard (AES), the message is encrypted and decrypted with the same

key shared by the transmitter and the receiver, while in the asymmetric crypto system, such

1
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Figure 1.1: General secure-communication scheme.

as Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC), the message

is encrypted by the transmitter with the receiver’s public key. The receiver will decrypt

the message by the receiver’s private key which is unknown to others. As compared to a

asymmetric crypto system, a symmetric one usually has lower computation cost and higher

throughput, but lower security level. In a practical embodiment, before message transmis-

sion, a asymmetric crypto system can be used to exchange a key, then a symmetric crypto

system uses the exchanged key to transmit the message with high throughput. Please refer

to chapters 3 and 9 in [18] for the detailed descriptions. In this research, we focus on the

secure communications which are based on symmetric crypto systems.

An orbit generated by a chaotic system is irregular, aperiodic, unpredictable and sensi-

tive to initial conditions [1]. These characteristics coincide with the confusion and diffusion

properties in cryptography. Thus, since 1990s, chaotic systems have been used in secure

communications. These chaotic-cryto systems can be divided into two forms: analog and

digital. [2–15].

The analog secure-communication is based on chaos synchronization. The main idea is

to mask messages by chaotic signals, then the messages can be recovered by a synchronized

2



chaotic system [16]. The digital secure-communication is based on the chaos theory. It is

based on the random-like behavior of the orbit generated iteratively by a chaotic system [2].

Because the orbit generated by a digital chaotic map is deterministic (computed by

computers) and sensitive to initial conditions (parameters and initial values), the pseudo

random number generator (PRNG) is a natural application of digital chaotic maps. PRNGs

are widely used in many applications, such as numerical analysis, integrated circuit testing,

computer games. It is also an important component in secure communications [13,14,17].

However, chaotic behaviors become unpredictable when a chaotic system is digitalized.

The dynamic degradation is caused by the limited precision used to compute the orbit.

The randomness quality of the output is greatly reduced, and the system behavior can be

easily analyzed. Hence, a lot of researchers address the problem and proposed methods

to improve the output complexity of digital chaotic systems. [11]. Besides complexity

of the output, efficiency is also an important issue for a chaos-based ciphers. One may

increase the level of complexity by applying complicated chaotic systems, however, it is

non-practical because of large computation cost.

In this dissertation, we will propose digital modified logistic maps and techniques to

increase the quality of randomness with good compromise between security and efficiency.

The proposed systems are suitable for digital secure communications and PRNGs. In the

following sections, we will introduce previous work and the organization of this disserta-

tion.

1.1 Previous Work

In analog chaotic secure-communications, chaotic signals are used as masking streams to

carry information which can be recovered by the chaotic synchronization behavior between

the transmitter and the receiver [19]. It is based on the concept that a chaotic system (drive

system) can be synchronized with a separate chaotic system (response system), provided

3



that the conditional Lyapunov exponents of the difference equations between the drive and

response systems are all negative proposed by Pecora and Carrol [16].

Besides, digital chaotic systems are also widely used for generating digital signals for

security systems [2, 3, 5, 6, 12, 14, 20]. Among others, Matthews [2] proposed the first

chaotic-crypto system based on a logistic map implemented on the computer. At the same

time, Wheeler [21] commented that Matthews’ system can indeed generate unpredictable

sequences. However, with short precision, the system will have a small number of total

states.

When chaotic systems are digitalized, it becomes ”pseudo-chaotic” because the dy-

namic behavior is reduced. For example, the cycle length of a orbit is short. Because of the

limited precision, there has truncation error for each computation. Two points of the orbit

with a difference which is smaller than the truncation error will become the same one after

truncating. The short output cycle leads to non-uniform output distribution. In this case,

the output is easy to be analyzed and attacked by enumerating all states of output.

Wheeler [21] suggested that digital chaotic system implemented with more digits can

solve the problem of short output cycle length. Also, multi-dimensional system constructed

by coupled maps [8, 13] and timing-based reseeding method [12] are also proposed to

increase the complexity and output cycle length.

Although using higher precision and coupled maps can increase the output cycle length

and complexity, it still can not solve another issue that is the small parameter space for

chaotic maps.Álvarez [22] pointed out that the usable region of parameter values is a

weakness of the discrete-time chaotic system. The chaotic behavior of the system is de-

pendent on the parameters. Unfortunately, all parameters are not equally strong. Some of

them will result inwindows. Note that here awindow is defined as the chaotic orbit of a

non-linear system visualized as periodic on computers (see e.g. [1, p. 356]). The length of

orbit generated by the parameter inwindow is fixed no matter how large the precision is

4



increased to compute the orbit. The remaining parameter space may easily be attacked by

brute-force enumeration method because of smaller parameter space. For example, previ-

ous systems using logistic maps work only when parameterγ is equal or close to 4 [12].

This constraint makes the key space of a security system smaller than applications require.

Because of low computation cost, a logistic map, serves as popular map to generate

chaotic sequence for security systems [5, 9, 12]. In this dissertation, we will propose mod-

ified digital logistic maps for secure communications and PRNGs. Compared to a classi-

cal logistic map, our maps have larger parameter space and better quality of randomness.

Moreover, techniques for increasing the cycle length is proposed for our chaotic systems.

With low computation cost and good quality of randomness, proposed systems are suitable

for secure communications and PRNGs. The overview of this dissertation is described in

the next section.

1.2 Dissertation Overview

In Chapter 2, from our review of previous work, we deduce that to effectively use chaotic

maps in digital encryption, a system must meet the following three criteria. First, the length

of digital precision must be long enough to prevent the system from being attacked by state

enumeration. Second, the parameter space must be large enough for practical use. Finally,

the re-construction of the chaotic system must be infeasible using current computational

technology.

To solve these problems, we propose a Robust Hyper-Chaotic Encryption-Decryption

System (RHCEDS) for secure communications. An RHCEDS consists of two Robust

Hyper-Chaotic Systems (RHCS) for the transmitter and the receiver. An RHCS is con-

structed by coupling robust logistic chaotic maps [23], one carrier map and several hidden

maps, so that it has more than one positive Lyapunov exponent. Thus, the RHCS has a

higher degree of complexity than traditional discrete-time secure-communication systems

5



because the former uses multiple coupled chaotic maps rather than a single one [24]. The

new proposed system RHCEDS has a large parameter space which grows along with system

precision. Hence, the re-construction of our system is not feasible by current computational

technology. The statistical analysis of the RHCS shows that the system has good quality of

randomness.

In Chapter 3, we will propose a Variational Logistic Map (VLM) with un-restricted

parameter space, and can be implemented at lower cost as compared with classical logistic

map. Then, we design a Multi-VLM (MVLM) system constructed by VLMs to have output

sequence with higher degree of complexity and larger key space than a single VLM. An

MVLM constructed by four 32-bit VLMs can generate sequence with cycle length more

than2128 with a 128-bit external key. We demonstrate that MVLM can generate output

sequence with well quality of randomness with higher throughput and lower hardware cost

as compared to previous work.

In Chapter 4, a nonlinear, Digitalized Modified-Logistic Map based Pseudo Random

Number Generator (DMLM-PRNG) is proposed for randomness enhancement. Two tech-

niques, constant parameter selection and output sequence scrambling are employed to re-

duce the computation cost without sacrificing the complexity of output sequence. Statisti-

cal test results show that with only one multiplication, DMLM-PRNG passes all cases in

SP800-22. Moreover, it passes most of cases inCrush, one of the test suite of TesuU01.

When compared to solutions based on digitized pseudo-chaotic maps previously proposed

in the literature, in terms of randomness quality, our system is as good as a Rényi-map

based PRNG and better than a logistic-map based PRNG. Moreover, compared to solu-

tions based on Rényi-map based PRNG, DMLM-PRNG is better scalable to high digital

resolutions with reasonable area overhead.

Finally, the conclusion and future work will be given in Chapter 5.
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Chapter 2

Digital Secure-Communications Using
Robust Hyper-Chaotic Systems

In this chapter, we propose a robust hyper-chaotic system that is suitable for digital secure-

communications. The system consists of many coupled robust logistic maps that form a

hyper-chaotic system. It has a higher degree of complexity than traditional discrete-time

secure-communication systems that use only a single map. Moreover, the system has a

very large parameter space which grows along with system precision. Hence, attacking

the system by the method of map re-construction in current computation technology is

not feasible. Statistical analysis shows that the system achieves very high security level.

Finally, two hardware architectures (multiple-cycle and pipelined) are proposed for area

and performance optimization, respectively.

The rest of this chapter is organized as follows. In Section 2.1, our target system Ro-

bust Hyper-Chaotic Systems (RHCS) and a Encryption/Decryption scheme Robust Hyper-

Chaotic Encryption-Decryption System (RHCEDS) will be presented. In Section 2.2, the

cryptanalysis will show that our system is suitable for secure communications. In Sec-

tion 2.3, we present the hardware implementation to demonstrate our RHCEDS. Finally,

summary is given in Section 2.4.
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p(i)

z(i)

c(i)

x(0)
F Gy(0)

z̃(i)

p̃(i)

Figure 2.1: The architecture of RHCEDS.

2.1 Robust Hyper-Chaotic Encryption-Decryption System

The crypto system is defined as communications between the Encryption layer and the

Decryption layer in a general secure-communication scheme. An architecture of crypto

system is shown in Figure 2.1. Given an initial vectorx(0) = [x
(0)
1 , . . . , x

(0)
n ]⊤, para-

meters including ann-by-n stochastic matrixC = [cij ] and a chaotic parameter vector

r = [γ1, . . . , γn]⊤, wherex
(0)
i ∈

{

(0, 1)\{1
2
}
}

, γi ≥ 4 for i = 1, . . . , n and0 < cij < 1

for i, j = 1, . . . , n., the RHCEDS is constructed by two RHCSs, denoted byF andG,

respectively. At the encryption end, a masking sequencez(i) is generated by the system

F (r,x) and used for encrypting the plaintextp(i). At the decryption end, the receiver re-

covers the plaintext from the ciphertextc(i) by removing the mask̃z(i) generated by the

systemG(r,y).

2.1.1 Robust Logistic Map

Before introducing the RHCS, we present a robust logistic map which is developed from a

classical logistic map.

A classical logistic map is defined by

x̄ = γx (1 − x) , x ∈ [0, 1], (2.1)

whereγ is a parameter and0 ≤ γ ≤ 4. In Equation (2.1), when3.57 < γ ≤ 4, it is achaos
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Figure 2.2: Classical logistic maps withγ = 3.62 and4.

region and the generated sequence is non-periodic. However, the set of parametersγ that

result inwindowsof Equation (2.1) is open and dense. Moreover, the chaotic attractor is not

fully distributed within the range of 0 to 1 and its length is less than one. In this case,γ is

easily detected by measuring the length of chaotic attractors. For example, in Figure 2.2(a),

whenγ = 3.62, the length of attractor is 0.594. The only useful case of Equation (2.1) is

whenγ = 4 because its chaotic attractor is fully distributed in the range of 0 to 1 as shown

in Figure 2.2(b). Therefore, the selection ofγ values is limited.

In order to increase the parameter space and to have a fully distributed map in [0,1], we

propose a robust logistic function as follows:

L(γ, x) =

{

γx(1 − x) (mod 1), x ∈ Iext,
γx(1−x) (mod 1)

γ

4
(mod 1)

, x ∈ Iint,
(2.2)

whereIext ∈ (0, 1) \ Iint (do not belongIint), Iint = [η1, η2], η1 = 1
2
−

√

1
4
−

[ γ

4
]

γ
and

η2 = 1
2

+
√

1
4
−

[ γ

4
]

γ
in which [w] is the greatest integer less than or equalw. A robust

logistic map (RLM) is then defined byx(i+1) = L(γ, x(i)).

By this modification, we extend theγ range to a value more than 4. WhenL(γ, x) is

greater than 1, the first equation in Equation (2.2) is to shift the map value greater than 1

to the range of 0 to 1. Figure 2.3 shows that modular one operation keepsx invariant in
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Figure 2.3: The mapping without normalization ofx vs. L(γ, x) with γ = 7 and31.

[0,1]. However, whenx is in the rangeIint, the mapping is not fully distributed in [0,1], it

results inwindowof the map. Therefore, whenL(γ, x) is less than 1, the second equation

in Equation (2.2) is to scale the value to the range of 0 to 1. With both modular and scaling

operations, Figure 2.4 shows that two maps are fully distributed in [0,1] with piecewise

nonlinear map whenγ = 7 and 31.

To understand if there arewindowsin our robust logistic map whenr ≥ 4, we analyze

the map by numerical methods. First, we compute the Lyapunov exponents by the method

in [25]. In Figure 2.5, Lyapunov exponents of Equation (2.2) are computed fromγ = 0

to 16. It shows whenγ ≥ 4, Lyapunov exponents are all positive. Next, we compute the

bifurcation diagram ofL(γ, x) from γ = 0 to 16. The result is shown in Figure 2.6. It

shows that, whenγ ≥ 4, L(γ, x) is fully distributed in the range of 0 to 1 and there is

no window. These numerical results indicate that the robust logistic map is indeed chaotic

with large parameter space whenγ ≥ 4.

2.1.2 Construction of Robust Hyper-Chaotic System

To solve the dynamical degradation and increase the output complexity, methods [20, 26–

29] with coupled map lattice for multi-dimensional system were proposed. Huet al. [26]
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Figure 2.6: Bifurcation diagram ofL(γ, x) for γ ∈ [0, 16].

presented a synchronous chaotic spread-spectrum CDMA system. Luet al. [27] devel-

oped a spatiotemporally chaotic cryptosystem with one-way-coupled. Liet al. [20, 28, 29]

generated multiple pseudo-random-bit sequences (or multiple keystreams) by spatiotempo-

ral chaotic systems, logistic maps and skew tent maps. Their results showed that coupled

chaotic maps can be a good candidate for generating chaotic sequence for security systems.

Based on a coupled map lattice a robust hyper-chaotic system (RHCS) can be con-

structed. The system is defined by

x(i) = F (r,x(i−1)) := CL(r,x(i−1)), (2.3)

wherex(i) = [x
(i)
1 , . . . , x

(i)
n ]⊤, L(r,x(i−1)) =

[

L(γ1, x
(i−1)
1 ), . . . , L(γn, x

(i−1)
n )

]⊤

, in which

L is the robust logistic map defined in Equation (2.2), and

C =











c11 c12 · · · c1n

c21 c22 · · · c2n

...
...

. . .
...

cn1 cn2 · · · cnn











is a positive stochastic coupling matrix with all elements0 < cij < 1 and
∑

j

cij = 1 for

i, j = 1, . . . , n. The masking sequence is defined by

z(i) = x
(i)
1 . (2.4)
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The systemG isalso an RHCS defined by

y(i) = G(r,y(i−1)) := CL(r,y(i−1)), (2.5)

wherey(i) = [y
(i)
1 , . . . , y

(i)
n ]⊤ for i > 0. The unmasking sequence is defined by

z̃(i) = y
(i)
1 . (2.6)

Note thatF andG are hyper-chaotic systems inx(i) andy(i), respectively, with the same

parameters ofC andr.

The RHCS (F or G) is constructed byn-coupled robust logistic maps and each robust

logistic map in the system has its own positive Lyapunov exponent. To understand if the

dimension of the whole system in terms of the number of positive Lyapunov exponents is

indeed increased, we analyze the RHCS by numerically. Since the higher dimension of the

system, the more positive Lyapunov exponents the RHCS has. Hence, we expect that the

behavior of the output masking sequence (z(i)) is more complex. The number of coupled

robust logistic maps being set to 2 (i.e.,n = 2) is taken as our example. In this case, there

are two parametersγ1 andγ2 for two robust logistic maps. In Figure 2.7(a), two Lyapunov

exponents of 2-coupled robust logistic map are plotted forγ1 = 0 to 16 with the scale of

1
30

, and a fixedγ2 = 29.6668. The result shows whenγ1 ≥ 4, two Lyapunov exponents are

both positive, that is, the system is hyper-chaotic withoutwindow. Similarly, the number of

Lyapunov exponents forn = 3, 4 and 10, where values ofγi, 1 < i ≤ n are fixed, and the

range ofγ1 is from 0 to 16, are shown in Figure 2.7(b)(c)(d), respectively. We can see that

the number of positive Lyapunov exponents of the system are increasing withoutwindow

asn increased, provided that allγi in the system are larger than 4.

In order to encrypt and decrypt information correctly, the masking sequencez(i) must

be identically synchronized to the unmasking sequencez̃(i). We first randomly create an

initial vectorx(0) of the transmitter, and then send it to the receiver by replacing its initial

vectory(0) by x(0). After this step, it holds thatz(i) = z̃(i) for i > 0. Then the RHCEDS
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Figure 2.7: Lyapunov exponents vs.γ for n = 2, 3, 4 and 10.
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is ready for information transmission. On the other hand, if the bandwidth of the channel

is just one component ofx(0), thenn steps are required to sendn elements of the initial

vector to the receiver. Therefore, aftern steps, the vectory(0) will be equal tox(0).

2.1.3 Encryption & Decryption

In our secure-communication system, RHCEDS, the masking sequence of systemF will

be used as a mask to encrypt plaintext. In other words, the cryptograph system is similar

to an one-time-pad block cipher. In this case, the randomness of the masking sequence

directly affects the security level of the system. To enhance the randomness of the masking

sequence, theℓ most significant digits are hidden in communications, that is, theseℓ digits

are dropped and not used in the encryption. The more hidden digits are used, the more

difficult to analyze the encrypted information. However, the increased security is at the

expense of more computing resource. In our experimental results, hiding two-digits is

found to have good randomness, which is examined by a random number testing package,

NIST SP 800-22 [30].

In summary, our secure-communication system, RHCEDS, is implemented as follows.

In Transmitter :

We usem digits to represent all real numbers in the systemF including parametersr andC,

and the initial vectorx(0). Givend = m − ℓ ∈ N, for i ≥ 1, the plaintextp is decomposed

into a sequence of{p(i)} with the length of eachp(i) equal tod digits. The encryption

process is as follow:

z(i) =
⌊

x
(i)
1

⌋

ℓ
,

c(i) = z(i) ⊕ p(i),

where⊕ is an XOR operation, and⌊x⌋ℓ means dropping the firstℓ digits fromx.

In Receiver:
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In receiver, the decrypted sequence,p̃, is as follow:

z̃(i) =
⌊

y
(i)
1

⌋

ℓ
,

p̃(i) = z̃(i) ⊕ c(i).

Since systemsF andG have the same initial vector andz(i) = z̃(i), we can correctly decode

ciphertext, that is,̃p = p.

From the above descriptions, the properties of the RHCEDS can be summarized as

follows:

• There aren2 selections of parameters to formr andC. The large parameter space

makes the attacking by brute-force enumeration infeasible.

• For the same plaintext, the crypto system can generate different ciphertexts with

different initial vectors.

• Incomplete carrier map is transmitted in the public channel. Therefore, it is hard to

re-construct the map even under the assumption of “chosen plaintext” attack.

2.2 Cryptanalysis of RHCDES

The cryptanalysis of our system will be based on an example where the precision of the

system ism = 8, and the number of coupled robust maps is 2. Withn = 2, the masking

stream generatorF is shown in Equation (2.7).
{

x
(i)
1 = c11L(γ1, x

(i−1)
1 ) + (1 − c11)L(γ2, x

(i−1)
2 ),

x
(i)
2 = (1 − c22)L(γ1, x

(i−1)
1 ) + c22L(γ2, x

(i−1)
2 ).

(2.7)

2.2.1 Parameter Space

Attackers may construct a chaotic map by identifying its unique orbit if the key space is

small. Therefore, the parameter space must be large enough for practical use.
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According to the bifurcation diagram in Figure 2.6 and Lyaponov exponents in Fig-

ure 2.5, we found that our robust logistic map has nowindows whenγ ≥ 4.

Therefore, we can judiciously choose a stochastic matrixC and r to create ann-

dimensional system with at least two positive Lyapunov exponents. That is, the system

(2.3) has nowindow, which guarantees that there is no scruple by picking the parameters

to construct a hyper-chaotic system. Furthermore, the parameter space of the system (2.3)

is large enough for any practical application. For example, in Equation (2.7), there are four

parametersc11, c22, γ1 andγ2 and the total number of parameters that can be selected is

24×32 = 2128. This parameter space is much larger than2100 which is the suggested size for

parameter selection in [11,22].

Moreover, one important property of the parameter is worth noticing. The generated

masking sequence has a very sensitive dependence on the parameters. Without this prop-

erty, attackers can easily find the relationship between parameters and their corresponding

masking sequences.

To show this property, an experiment is conducted. First, the masking stream generator

F shown in Equation (2.7) is taken as an example. Next, a set ofC andr parameters are

selected as base to generate a base masking sequenceSbase. Then, 200γ1 are generated

by varying the least significant bits of baseγ1. With differentγ1 and the sameγ2 andC,

200 masking sequences are generated whereSbase±d×2−32 , d = 1, . . . , 100 denote the mask-

ing sequences. Finally, we compute bit error rate (BER) betweenSbase andSbase±d×2−32 .

The result is shown in Figure 2.8. It can be seen that the generated sequences are indeed

different even with a small change by2−32 in one parameter.

2.2.2 Re-construction

Attackers may plot the map by analyzing output sequences of a chaotic map. Unrolling

a system is a method to compute the values of unknown parameters. In our system, for
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example, wheni = 1, Equation (2.7) has five unknown variables,γ1, γ2, c11, c22 andx
(1)
2 .

Unrolling the system toi = 4, attackers will have eight equations with additional three

unknown variables,x(2)
2 , x

(3)
2 andx

(4)
2 . Totally, eight equations are given to solve eight un-

known variables. However, in RHCS, it is infeasible for an attacker to re-construct the map

by unrolling because of the following two features of our system. First, the masking se-

quencez(i) is an incomplete output sequence of the systemF . The most significantℓ digits

are dropped, that is,z(i) 6= x
(i)
1 . If there are fourx(i)

1 in the equations, each ofz(i) drops

j bits, the possible combinations of fourx
(i)
1 are(2j)4. Second, mapping function is com-

puted using the modular one operation in our robust logistic map. The piecewise non-linear

map is not a one-to-one mapping. Given an output ofL map, there are⌈γ

4
⌉ × 2 possible

inputs. There are eightL maps needed to be solved in this example. The combination of

solutions are(⌈γ

4
⌉ × 2)8. Assuming thatγ is less than 2,048, andj is 8, the attackers in

total need to try(28)4 × 1, 0248 possible combinations of equations to solve the unknown

variables taking the above two features into account. If we use a computer with 1 THz

(Tera Hertz) CPU to run1012 cases per second, then for the above example, it requires near
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one million years to re-construct the systemF . It is obvious that re-construction of RHCS

is infeasible using current computation technology.

2.2.3 Statistical Analysis

To understand how precision affects randomness, we conduct randomness test form = 4

to m = 12, wherem denotes the number of digits (4-bit for one digit). SP800-22 testing

package [30] is used in our analysis process to check the randomness of our system. The

masking sequence of the systemF is
⌊

x
(i)
1

⌋

2
where the most significant 2 digits of the

x1
(i) are dropped. Each test will produce a “p-value” from SP800-22 testing package. The

higher p-value (a minimal default value is recommended by 0.01), the more random the test

case. For each precision we choose three differentγ1 in the RHCS system while keeping

the other parameters,γ2, c11 andc22, unchanged. For eachγ1, 100 sequences generated by

RHCS with the length of106 bits are fed to the testing package. As suggested in SP800-22,

for each statistical test, the minimum pass rate of a well random source is 0.97 out of 100

binary sequences. Table 2.1 shows the result form = 4 to 8. With this standard, we can

see that whenm is less than 8, the randomness is obviously alleviated. On the contrary,

as shown Table 2.2, whenm is larger than 8, the generated output sequences are indeed

random.

2.3 System Demonstration

2.3.1 Architecture of Encryption System

To demonstrate the effectiveness of the systemF , we implement it in hardware. In our

design, the number of coupled robust logistic maps is selected to be 2.

Let sca1 and sca2 denote two scaling factors, 1
γ1
4

(mod 1)
and 1

γ2
4

(mod 1)
, respectively.

Since parametersγ1, γ2, sca1, sca2, c11, andc22 are constants,N1, . . . , N8 are precalculated

to reduce computation cost, where
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Table 2.1: The SP800-22 test results form = 2 to 8 with γ2 = 1709.ffd3, c11 =
0.c8, c22 = 0.ce

m = 4 m = 6 m = 8
γ1(HEX) 100 2d49 7b63 100.80 2d49.ff 7b63.3b 100.80 2d49.ff 7b63.3b

Frequency 0.00 0.00 0.16 1.00 1.00 1.00 1.00 1.00 0.99
Block freq. 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98
Cumulative 0.00 0.00 0.70 1.00 0.99 0.99 1.00 0.99 1.00
Runs 0.00 0.00 1.00 1.00 0.96 0.85 0.99 0.96 0.99
Longest run 0.93 0.00 0.00 0.99 0.98 0.98 0.97 0.98 0.98
Rank 0.99 1.00 0.88 0.99 0.99 1.00 0.98 0.99 0.98
FFT 0.00 0.00 0.00 0.99 1.00 0.98 0.99 1.00 0.98
Nonoverlap. 0.79 0.24 0.85 0.99 0.99 0.99 0.99 0.99 0.99
Overlap. 0.00 0.00 0.00 1.00 1.00 0.99 0.98 1.00 0.98
Universal 0.86 1.00 1.00 0.97 1.00 0.98 0.99 1.00 0.99
Apen 0.00 0.00 0.00 1.00 1.00 0.94 0.99 1.00 0.98
Random e. 1.00 0.00 0.98 1.00 0.99 0.99 0.97 0.99 0.99
Random e.v. 1.00 0.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99
Linear Comp. 0.97 1.00 1.00 0.98 0.99 0.99 0.97 0.99 0.98
Serial 0.00 0.00 0.00 0.99 0.98 1.00 0.99 0.98 0.99

Fail Count 11 11 9 0 1 2 0 1 0

N1 = γ1 × c11,

N2 = γ1 × c11 × sca1,

N3 = γ2 × (1 − c11),

N4 = γ2 × (1 − c11) × sca2,

N5 = γ1 × (1 − c22),

N6 = γ1 × (1 − c22) × sca1,

N7 = γ2 × c22,

N8 = γ2 × c22 × sca2.

The four conditions to determine if a modular or scaling operation is to be performed

are:η1 = 1
2
−

√

1
4
−

[
γ1
4

]

γ1
, η2 = 1

2
+

√

1
4
−

[
γ1
4

]

γ1
, η3 = 1

2
−

√

1
4
−

[
γ2
4

]

γ2
andη3 = 1

2
+

√

1
4
−

[
γ2
4

]

γ2
.

20



Table 2.2: The SP800-22 test results form = 10 and 12 withγ2 = 1709.ffd3, c11 =
0.c8, c22 = 0.ce

m = 10 m = 12
γ1(HEX) 100.80 2d49.ff 7b63.3b 100.80 2d49.ff 7b63.3b

Frequency 0.99 0.98 1.00 1.00 0.99 1.00
Block freq. 1.00 0.98 0.99 0.99 0.98 0.99
Cumulative 0.99 0.98 1.00 1.00 0.99 1.00
Runs 0.99 0.98 0.99 0.99 0.99 0.99
Longest run 1.00 1.00 0.99 1.00 1.00 1.00
Rank 1.00 0.98 0.98 1.00 1.00 1.00
FFT 0.99 0.98 0.98 1.00 0.99 0.97
Nonoverlap. 0.99 0.99 0.99 0.99 0.99 0.99
Overlap. 0.99 0.99 0.97 0.99 0.99 0.98
Universal 0.99 1.00 0.99 0.98 0.98 0.99
Apen 0.98 1.00 1.00 0.99 0.99 1.00
Random e. 0.99 0.98 0.98 0.99 0.98 0.98
Random e.v. 0.99 0.99 0.99 0.99 0.99 1.00
Linear Comp. 1.00 0.97 1.00 1.00 0.97 0.98
Serial 0.99 0.98 0.98 0.99 1.00 1.00

Fail Count 0 0 0 0 0 0

Sinceγ1 and γ2 are given by the user and remain unchanged during operation,η1, η2, η3,

andη4 are all input vectors to the system. Lets1(s2) be a flag variable ands1 = 1(s2 = 1)

whenη1 < xi−1
1 < η2 (η3 < xi−1

2 < η4) holds. The systemF (Equation 2.7) can be

rewritten as

x
(i)
1 =



















N1 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N3 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 0, s2 = 0,

N2 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N3 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 1, s2 = 0,

N1 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N4 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 0, s2 = 1,

N2 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N4 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 1, s2 = 1,

x
(i)
2 =



















N5 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N7 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 0, s2 = 0,

N6 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N7 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 1, s2 = 0,

N5 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N8 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 0, s2 = 1,

N6 × x
(i−1)
1 × (1 − x

(i−1)
1 ) + N8 × x

(i−1)
2 × (1 − x

(i−1)
2 ), s1 = 1, s2 = 1.

The data flow of systemF is shown in Figure 2.9. In this flow, 6 multiplications are

required to generate one mask,z(i).
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Figure 2.9: The data-flow of the mask generator.

To understand the tradeoff between area and performance, we will propose two ar-

chitectures to implement systemF . The first one is for area and the second one is for

performance. Let us look at the first design. Since it is for area efficiency, multiple-cycle

architecture is adopted where only one multiplier and one adder are used and all multi-

ply and add operations use the same hardware at different cycle. Figure 2.10 shows the

block diagram of systemF in hardware. In this design, a two-stage pipelined multiplier

is implemented. Hence, it requires 6 cycles to generate one mask. Besides the two-stage

multiplier, the system has two registers, “RegA” and “RegB”, for temporary data storage

and four add/subtracters. Block “NEG” computesNEG(x) = 1−x and block “IntCheck”

is used to check if the input is inIint or not.

The second design is for performance efficiency. Pipelined architecture is adopted. The

data flow of our system is partitioned into 2 stages separated by registers, and hence a 2-

stage pipelined design. The data flow is shown in Figure 2.11 and the block diagram in
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Figure 2.12. In this design, four multipliers are used and run in concurrency. One mask is

generated at every cycle.

We describe our multiple-cycle and pipelined architectures in hardware description lan-

guage (HDL), and then synthesize them by commercial tools. To be more specific, two

designs are written in Verilog and synthesised by Synopsys Design Compiler with TSMC

.18 um technology library. Area and timing information is obtained in gate-level netlist.

Moreover, we want to understand the hardware overhead when precisionm = 8 is

increased tom = 12. Implementations form = 8 andm = 12 are performed. That

is, all real numbers in the system is represented by 8 (12) digits. Then, in hexadecimal

representation (one digit is 4 bits), the system operates in 32(48) bits. The number of

hidden digits,ℓ is selected to be 2. With 2 hidden digits, the length of one masking stream

is 24 (40) bits. Hence, the plaintext sequence will be divided into segments of length of 24

(40) bits.

Table 2.3 shows the synthesized results. Whenm = 8, the experimental results show

that the transmitterF of multiple-cycle design achieves an encryption rate of 400M bits per

second with 9.4K gate count. When implemented in the pipelined architecture, the system

generates mask sequence at a rate of 2.4G bits. That is, our pipelined architecture is 600%

faster than the multiple-cycle one. However, the area of pipelined architecture is 401%

larger than that of multiple-cycle one. Moreover, by increasingm = 8 to m = 12, for

multiple-cycle architecture, the system performance is 167% faster with 233% more area;

for pipelined architecture, 1000% faster with 938% more area.

2.3.2 Example

We use the following parameters to demonstrate the systemF with m = 12 andn = 2.
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Table 2.3: The synthesized result of encryption system.

m = 8 m = 12

Architecture multiple-cycle pipelined multiple-cycle pipelined

Gate Count(k) 9.4 37.7 21.9 88.2
Throughput 1/6 1 1/6 1
Mask Length(bits) 24 24 40 40
Clock Frequency(Mhz) 100 100 100 100
Bits Per Second(M bits) 400 2400 667 4000

Area Ratio 1 4.01 2.33 9.38
Performance Ratio 1 6 1.67 10

x
(0)
1 = 0.26e7bf70710c

x
(0)
2 = 0.3cebe4e04ecb

γ1 = 15.0000000000

γ2 = 23.0000000000

c11 = 0.fe0000000000

c22 = 0.fa0000000000

Table 2.4 shows the encryption result of the plaintext “The Digital Encryption.” The

plaintext is encoded into ASCII code format, and the data sequence will be encrypted by

a masking sequence which is generated byF with the above parameters. The result also

shows the receiver can recover the plaintext with the same parameters.

2.4 Summary

We have proposed a Robust Hyper-Chaotic Encryption-Decryption System composed of

two RHCSs that is suitable for digital secure-communication. An RHCS consists ofn-
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Table 2.4: The encryption example.

Plaintext:
The Digital Encryption.
Plaintext in ASCII Code:
546865004469676974616c00456e6372797074696f6e2e
Ciphertext:
5477bc5de59b7f735bac76c8a022ebaa4a763c2ed41b9d
Decrypted plaintext:
The Digital Encryption.

coupled robust logistic maps and has a large parameter space which grows along with

system precision. Because multiple coupled robust chaotic maps rather than a single one

are used, map re-construction of the RHCS system is not feasible by current computation

technology. The result shows that the generated masking sequence has good randomness

for stream cipher. Two hardware architectures (multiple-cycle and pipelined) have been

proposed for area and performance optimization, respectively. The demonstration shows

that RHCS can be easily realized in hardware.
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Chapter 3

A Fast Non-Linear Digital Chaotic
Generator in Secure Communications

In Chapter 2, we proposed RLM to extend the parameter space forγ > 4 and a coupled

hyper-chaotic system to generate more complex output sequence. Although the output

sequence of the system has good quality of randomness, it needs up to three multiply oper-

ations to compute the next states [15]. The cost is larger than a classical logistic map where

only two multiplications are used. Moveover, multiply operations are required to form a

coupled system. These extra multiply operations limit the throughput of the system.

In this chapter, we will propose a Variational Logistic Map (VLM) with un-restricted

parameter space, and can be implemented at lower cost as compared with classical logistic

map. First, we show that the raw model of our VLM is a chaotic map by computing the

discrete Lyapunov Exponents [17] for different parameters. Then, to verify the chaotic

properties of our digitalized VLM, a set of numerical experiments including return map,

output cycle length and output spectrum analysis are conducted. Moreover, SP800-22 [30]

and TestU01 [31] are applied to verify the statistical properties of the proposed system.

Then, we design a Multi-VLM (MVLM) system constructed by VLMs to have output

sequence with higher degree of complexity and larger key space than a single VLM. An

MVLM constructed by four 32-bit VLMs can generate sequence with cycle length more
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than2128 with a 128-bit external key. We demonstrate that MVLM can generate output

sequence with well quality of randomness in higher throughput and lower hardware cost as

compared to robust hyper-chaotic systems (RHCS) [15].

Finally, cryptanalysis is conducted, we show that MVLM has large parameter space,

long output cycle length, and is hard to reconstruct. From statistical point of view, outputs

of MVLM with different keys have small correlations to each other. Moveover, MVLM

passes all tests in SP800-22 and TestU01 which indicates MVLM has good quality of ran-

domness.

The rest of this chapter is organized as follows. In Section 3.1, the Variational Logistic

Map (VLM) is presented. In Section 3.2, we propose a scrambling method to scramble the

output and parameter of VLM. In Section 3.3, architecture of MVLM will be shown. In

Section 3.4, cryptanalysis will demonstrate that our system is suitable in secure communi-

cations. In Section 3.5, we present hardware implementation of MVLM system. Finally,

summary is given in Section 3.6.

3.1 Variational Logistic Map (VLM)

Again, a classical logistic map is defined by

L(γ, x) = γx(1 − x), x ∈ (0, 1). (3.1)

Most of chaotic behavior indexes such as the invariant set, Lyapunov exponent, topologi-

cal, metric, and Renyi specific entropies show that the logistic map has complex behavior.

However, these indexes are computed under real number definition and without direct rela-

tionship to requirements of secure communications. Two facts show that parameters are not

equally strong. The first one iswindowsin parameter space. In [32], authors have proved

that the parameter space of logistic map haswindowswhich is open and dense. Namely,

a large number of chaotic orbits are unstable, i.e., settle down to a stable orbit which has
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short cycle length and can not be improved even the system precision is increased. Parame-

ters inwindoware obviously not secure. The second one is limited precision of digitalized

chaotic map. If the difference of two numbers is smaller than the resolution, two numbers

will become identical during computation. Some parameters may generate short length

orbit because two close points on the orbit become identical due to truncation. Based on

the above two observations, a classical logistic map can not be directly utilized in digital

security system.

In order to remove thewindowgenerated by Equation (3.1) and to preserve the advan-

tage of fully distribution in (0,1) forγ = 4, in Chapter 2, we proposed a robust logistic map

(RLM) to extend the parameter space toγ > 4. RLM is fully distributed in (0,1) and has

no windowwhenγ > 4. RLM is given by

xi+1 =

{

γxi(1 − xi) (mod 1), xi ∈ Iext,
γxi(1−xi) (mod 1)

γ

4
(mod 1)

, xi ∈ Iint,
(3.2)

whereIext ∈ (0, 1) \ Iint, Iint = [η1, η2], η1 = 1
2
−

√

1
4
−

[ γ

4
]g

γ
and η2 = 1

2
+

√

1
4
−

[ γ

4
]g

γ
in

which [w]g is the greatest integer less than or equalw.

Although RLM extends the parameter space and presents chaos whenγ > 4 [33],

to compute the next state of RLM, it needs up to three multiplications while only two

multiplications are used in a classical logistic map. More precisely, the first multiplication

is used to compute(γxi) and the second multiplication is used to multiply(1 − xi). The

third multiplication is needed to multiply(γ

4
(mod 1))−1 if xi is in Iint.

Since we focus on digital secure communications, we will proposed a Variational Lo-

gistic Map (VLM) which is based on RLM in digitalized implementation. When compared

to RLM, VLM also extend parameter space toγ > 4 and needs only two multiplication

operations to compute the next state.

To construct VLM, first, we propose a raw model,

Lp(α, γ, x) = {α [(αγx) (mod 1)] (1 − x)} (mod 1), (3.3)
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which is equivalent to

Lp(α, γ, x) = [α (αγx − [αγx]g) (1 − x)] (mod 1), (3.4)

In fact, Equation (3.4) can be rewritten by

Lp(α, γ, x) =

{

f(α, γ, x) − g(α, γ, x) if f ≥ g,

f(α, γ, x) − g(α, γ, x) + 1 if f < g,
(3.5)

where

f(α, γ, x) = [α2γx(1 − x)] (mod 1), (3.6)

and

g(α, γ, x) = {α[αγx]g(1 − x)} (mod 1). (3.7)

whereα, γ > 0, andx ∈ (0, 1).

Let γ̂ = α2γ = 4k, k ∈ N, functionf can be rewritten asf = [γ̂x(1 − x)] (mod 1).

By the definition of Equation (3.2), the interval,Iint, of functionf is equal to

Iint = [η1 , η2]

= [ 1
2
−

√

1
4
−

[ 4k
4

]g

4k
, 1

2
+

√

1
4
−

[ 4k
4

]g

4k
]

= [1
2

, 1
2
].

(3.8)

which means there is nox in Iint. Whenγ̂ is a multiple of four, functionf is a subset of

RLM. Hence,Lp is constructed by RLM,f , and functiong which is a scrambling function

with respect to functionf .

Then, aq-bit VLM will be defined by a digitalizedLp in q-bit precision. First of all,

we define the value of coefficientsα because the value ofα will affect the truncation result

during successive multiplications and modular operations.

To define the value ofα, We start from the point of implementing the multiplication in

finite-precision arithmetic. Because the multiplication is defined in finite precision, to store

product in the same number of bits, truncation is needed after multiplying two numbers.

32



For example, in Figure 3.1(a), leta, b and c be 4-bit binary numbers andc = a × b.

The result ofa × b will be truncated from 8-bit to 4-bit and assigned toc. Suppose the

least significant bits be truncated. We find thatcH is directly determined by only 6 partial

products, which area3b1, a3b2, a2b2, a3b3, a2b3 anda1b3, and indirectly determined by the

carry-outs generated by other partial products. That means, the change of inputs may not

cause the change of outputs. Hence, with differentx, a sub-operationγ × x in a logistic

map may lead to the same next value during sequence generation because the difference

in the least significant bits is eliminated by truncation. That differentxs can not generate

different orbits result in short length cycles.

On the contrary, in Figure 3.1(b), the value ofcM depends on the largest number of

partial products. That means, when any bit of input is changed,cM has higher probability

to change its value thancH .

The purpose ofα in equationc = (αab)(mod 1) is to make the output of the equation

depend as many input bits as possible. We construct an experiment to see the output dis-

tribution versus different values ofα in equationc = (αab)(mod 1) whereα = 2k and

k = 0, 4, 8. Let a, b andc be 8-bit binary numbers in (0,1) and0.p1p2p3 · · · p16 denotes

16-bit product ofa × b. For example, whenα = 24, the result of(αab)(mod 1) is equal

to 0.p5p6 · · ·p16. Becausec is 8-bit, p13, p14, p15, andp16 are dropped. Three results,cL,

cM , andcH are computed withα=28, α=24, andα=20 respectively. More specifically,cL is

equal to0.p9p10 · · ·p16, cM is equal to0.p5p6 · · ·p12, andcH is equal to0.p1p2 · · ·p8.

Let a andb be selected in uniformly distributed. The Probability Mass Function (PMF)

of cL, cM andcH are shown in Figure 3.2(a)–(c), respectively, where the x-axis denotes the

value ofc. The results show that, for truncated resultcH andcL, we can observec results

in higher probability in some values. On the contrary,cM has even probability distribution.

The values of standard deviation forcL, cM , andcH are 0.26, 0.05 and 0.39, respectively.

The uniform distribution is an important property when a function is applied to a crypto
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Figure 3.1: (a) The least significant 4 bits truncated. (b) Preserving middle significant bits
in truncation operation.

system.

In Equation (3.3), to make the output of map uniformly distributed,α should be equal to

half length ofx. Sincex is in q-bit precision,α is equal toα = 2⌈
q

2
⌉. Here, our digitalized

VLM in q-bit precision is shown in Equation (3.9). Before the presentation of VLM, we

define a binary floor function,⌊x⌋a, which preserves the most significanta bits of x and

sets other bits to be zero. The VLM is defined as

V LM(γ, x) = ⌊[α ⌊(αγx) (mod 1) ⌋q (1 − x) ] (mod 1) ⌋q, (3.9)

wherex andγ areq-bit binary numbers in (0,1). Letx[i] be theith bit of variablex. x and

γ can be represented byx =
∑

2−ix[i], andγ =
∑

2−iγ[i] for i = 1 to q, respectively.

The detail of computation is as follows.
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Figure 3.2: Distributions forcL, cM , and cH . (a) cL = 0.p9p10 · · · p16, (b) cM =
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We take a 32-bit VLM as an example to describe the calculation ofV LM(γ, x). At

the beginning,(216γx)(mod 1) will be computed first. The result ofγx will be computed

and modulated to keep the value between (0,1), and then truncated to 32-bit by truncation

operation. More specifically, the integer part of216γx is the most significant 16 bits of

216γx sincex andγ are between (0,1). The(mod 1) operation will drop the most significant

16 bits of216γx, and⌊(216γx) (mod 1) ⌋32 operation will drop the least 16 significant bits

of 216γx. Hence, the most and least significant 16 bits ofγx are both truncated, and then

the result is passed to the next step.

Let ⌊(216γx) (mod 1) ⌋32 be p. p is a 32-bit binary number and will be multiplied by

1− x. Sincep(1− x) is a 64-bit binary number,p(1− x) will be truncated to 32-bit by the

same way we truncateγx. Finally,V LM(γ, x) is a 32-bit number and between (0,1).

One last constraint is for the value ofγ. γ is in q-bit and between (0,1). When2−q ≤

γ ≤ 2−(q−1), the result ofα2γ in Equation (3.4) is smaller then 4. However, as studied

in [33], α2γ is required to be a multiple of 4 for Equation (3.4) to generate a chaotic map.

In order to keepα2γ a multiple of four, we let the least significant two bits,γ[q − 1] and

γ[q], be equal to 0. That means the smallestγ is 2−(q−2) and the smallest value ofα2γ is

2
q
2 × 2

q
2 × 2−(q−2) which is equal to22. Hence, we guaranteeα2γ to be greater than4 and

a multiple of 4.

In Figure 3.3, we plot the return map of VLM withγ = 2−16. Even with a small value

of γ, VLM becomes a nonlinear map with plenty of discontinuity.

The truncation operation duringV LM(γ, x) computation makesV LM(γ, x) not con-

tinuously differentiable, but the truncation error can be treated as a scrambling function of

Equation (3.3). Because of the discontinuity of the function, it is difficult to theoretically

prove the chaotic property of the proposed digitalized VLM. Hence, numerical experiments

to verify the chaotic properties of VLM including thediscrete Lyapunov Exponent[17], the

bifurcation graph, output spectrum analysis, andoutput cycle lengthare conducted.
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Figure 3.3:V LM(γ, x) with γ = 2−16.

1). The discrete Lyapunov Exponent and bifurcation graph.

The discrete Lyapunov Exponent (dLE) [17] was used to verify discrete chaotic properties

of the proposed system. LetM be a finite subsegment of the trajectory in lengthm for a

digitalized mapF andd(Mµ, Mν) be the distance betweenMµ andMν , whereMµ andMν

are inM. The basic expression of dLE is defined as

λF =
1

m

m−1
∑

µ=0

ln
d(F (Mµ+1), F (Mµ))

d(Mµ+1, Mµ)
. (3.10)

Map F is considered as a discrete chaotic map if it’s dLE (λF ) tends to a positive

number whenm → ∞. For example, letγ = 4, dLE of a 32-bit classical logistic map is

0.69 whenm = 10000.
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Figure 3.4: dLEs for 32-bit VLM when2−30 ≤ γ ≤ 2−20. wherem = 100, 1000, and
10000.

We compute dLEs for 32-bit VLM when2−30 ≤ γ ≤ 2−20. For eachγ, dLEs are

calculated with three differentms, 100, 1000, and 10000 to understand the trends of dLEs

whenm is increased. For eachm, dLEs for 1000 different trajectories are computed and

the average value is shown in Figure 4.1. The results show that dLEs are all positive when

γ > 0. Moreover, dLEs are increased whenm is increased. Hence, we know VLM is

discrete chaos as defined in [17].

Moreover, to understand if there arewindowsin VLM. We compute the bifurcation di-

agram of VLM forγ = 2−30 to 2−1. The result is shown in Figure 3.6. It reveals that the

output data of VLM has nowindowfor γ = 2−30 to 2−1. As a result, from theoretical and

numerical point of view, we know that VLM is a pseudo-chaotic map.
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2). The output spectrum analysis.

To analyze the auto-correlation and spectrum of output sequences, we randomly select the

values ofγ andx0. Figure 3.7 shows the results whenγ = 0.609375 andx0 = 0.21875.

First, in Figure 3.7(a) we plot 10,000 output data. The result shows that the output sequence

is visualized randomly. In Figure 3.7(b), the spectrum analysis by FFT signifies that the

output sequence is a chaotic sequence [25]. In Figure 3.7(c), the auto-correlation of the

output sequence indicates that the output data are quite independent.

3). The output cycle length.

This experiment is conducted to compare the cycle number of an output sequence generated

by

xi+1 := V LM(γ, xi), i = 0, 1, . . . . (3.11)

with that by a classical logistic map in 32-bit precision.

With random initial values, the cycle lengths of 10,000 output sequences are gener-

ated by 10,000γs chosen evenly from interval2−30 ≤ γ ≤ 2−1 for our VLM shown in

Equation (3.11) and from interval3.57 < γ ≤ 4 for a classical logistic map.

In Figure 3.5, we observe that in 10,000 output sequences generated by logistic map,

over 10% of the output sequences form periodic orbits with a period less than 100, and

only 9% of the output sequences form chaotic orbits with cycle lengths more than50, 000.

On the contrary, the result by VLM shows that there is only 0.2% of output sequences with

cycle lengths smaller than 100 and 31.8% larger than 50,000.

As to hardware cost, the modular arithmetic and truncation operation in Equation (3.9)

can be easily implemented by bit-selection, i.e., by signals routing. Implementation of

VLM will not increase circuit area as compared with classical logistic map. From applica-

tion point of view, our VLM is more efficient and reliable than the classical logistic map

under the same implementation hardware cost. Thus, based on the above properties of
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Figure 3.5: The histogram of cycle length for VLM and classical logistic map.

VLM, in the next two sections, we will develop a scalable Multi-VLM (MVLM) system to

increase key space and complexity by scrambling and coupling methods.

3.2 Scrambling Method for VLM

Although VLM has nowindowin parameter space, similar to other digitalized chaotic map,

the output cycle length is far below the number of states. As shown in Figure 3.5, 68.2%

of 10,000γs generate an output cycle with length small than 50,000. The cycle length is

relatively smaller than the number of states of a 32-bit VLM.

Scrambling methods are useful and widely used in digital chaotic system. In [5], an ex-

ternal uniformly distributed pseudo random number sequence is used as a noise to scramble

not only the output but also the parameter to increase the cycle length. In [34], a linear-

feedback-shift-register (LFSR) which has uniformly distributed outputs is used to scramble

the output of a digital chaotic system. The scrambling strategy for VLM is shown in Fig-
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Figure 3.6: The bifurcation diagram of VLM for2−30 ≤ γ ≤ 2−1.

ure 3.8, whereLx is aq-bit LFSR andδ is a one-step delay block.

The LFSR,Lx, generates a pseudo random number sequenceni which is defined as

ni = Lx(ni−1), i = 0, 1, . . . . (3.12)

Then,ni is xor-ed withxi to scramble output.Lx should be primitive to have a max-

imum cycle length output and uniform scrambled outputs. From Equation (3.12) the se-

quence generated by VLM after scrambling is defined as follows.

x̄i+1 = V LM(γ, x̄i) ⊕ ni, i = 0, 1, . . . . (3.13)

By the proposed scrambling method, a deterministic bound of cycle length is calculated

as follows. In [34], the low bound of cycle length of a scrambling system is given by

∆ · (2l − 1), (3.14)
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Figure 3.7: (a) output value plotting, (b) spectrum analysis, and (c) auto-correlation of a
trajectory generated by VLM withγ = 0.609375 andx0 = 0.21875.
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Figure 3.8: The scrambling strategy for VLM.

where∆ is the scrambling period andl is the register length of the LFSR.

Li’s [12] scrambles outputs of a logistic map by a fixed pattern with∆ = 700. By this

method, the cycle extension is small because the∆ andm are small. Moveover, the method

needs a counter to count the scrambling period. In our proposed scrambling method,∆ and

l are equal to1 andq, respectively. For aq-bit VLM, the low bound of cycle length is2q−1.

The hardware cost is aq-bit LFSR which is smaller than a counter used to count the period.

In order to generate uniformly distributed outputs with maximum cycle length, a primi-

tive LFSR is used in our scrambling system. After scrambling, the output as well as the next

input of VLM tends to be more uniformly distributed. An experiment is conducted to show

that the proposed scrambling can improve the output distribution by measuring the 1’s prob-

ability of the output sequence generated by a scrambled 32-bit VLM. In this experiment,γ

is equal to(0.10001000)H andLx is defined byLx(x) = x32+x31+x30+x29+x28+x22+1.

For each scrambling period,106 outputs are generated. In Figure 3.9, when the scrambling

period is decreased, the probabilities of 1 in outputs are close to 0.5.

We will verify the statistical property of VLM with scrambling method by statistical test

suite in Section 3.4.4. It will show that VLM with scrambling can significantly increase

output complexity when compared with classical logistic map. In next section, we will

construct MVLM by coupling VLMs to improve output complexity and enlarge key space.
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Figure 3.9: The 1’s probability when scrambling the sequence with different period.

3.3 Coupling Multi-VLM

Based on VLM and scrambling functions, a scalable Multi-VLM (MVLM), is proposed to

increase the number of keys and complexity of output sequence.

3.3.1 Structure of Multi-VLM

An MVLM is constructed bym VLMs denoted byV LMi for i = 1 to m. For eachV LMi,

the output is scrambled by a noise sequence,n(j), generated by a global (q ×m)-bit LFSR,

Lx.

Let the output ofV LMi at jth iteration bex(j)
i andx

(j)
i be scrambled by a segment of

(q × m)-bit noise sequence,n(j)[1 : qm]. The scrambling function is defined by

x̄
(j+1)
i = x

(j)
i ⊕ n(j)[q(i − 1) + 1 : qi], j = 0, 1, . . . , (3.15)

wheren(j) is generated byLx, andn(j+1) = Lx(n
(j)).

44



The scrambled result ofV LMi, x̄
(j+1)
i , is fed toV LM(i+1), exceptx̄(j+1)

m which is

generated by the last VLM and fed toV LM0. The whole system forms a cascaded chain

and can be defined by

x
(j)
i =

{

V LM(γ
(j)
1 , x̄

(j)
m ), i = 1;

V LM(γ
(j)
i , x̄

(j)
i−1), 1 < i ≤ m.

(3.16)

Finally, the output sequence of MVLM is generated by an output functionT . Output

function will be discussed in Section 3.3.3. The output sequenceSeq is given by

Seqj = T (x̄(j+1)
m ), j = 0, 1, . . . . (3.17)

For example, a MVLM constructed by 4 VLMs is shown in Figure 3.10. In this system,

m is equal to 4 and all VLMs are in 32-bit precision. The 32-bit outputx
(j)
1 of VLM1 will

be xor-ed byn(j)[1 : 32] to generatēx(j)
1 , which is fed toVLM2. Similar connections are

constructed forVLM2 andVLM3. Finally, the lastx(j)
4 is xor-ed byn(j)[97 : 128] to produce

x̄
(j)
4 which is fed toVLM1.

The last problem to be solved is the initial states,x
(0)
i for i = 1 to 4, andn0 for Lx. With

different initial states, outputs of MVLM will be different. In next section, key initialization

process is used to generate initial states. After key initialization, MVLM is ready for output

Seq.

3.3.2 Key Initialization

In Section 3.1, we have shown the chaotic properties of the VLM, where with small dif-

ferences inx and inγ, the generated output sequences will be very different. In MVLM,

this chaotic properties are not only used in generating the output sequence but also used in

key initialization. Key initialization generates values ofγi, x
(0)
i , andn(0) for i = 1 to m,

calledinternal keys. The purpose of key initialization is to generateinternal keysthat have
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Figure 3.10: The top view of a MVLM coupled by 4 VLMs.

minimal relations to the user specifiedKEY. With differentinternal keys, each MVLM can

generate different output sequence.

Without loss of generality, we take the MVLM shown in Figure 3.10 as an example of

key initialization process. The process can be easily extended to a MVLM constructed by

m q-bit VLMs.

The input of key initialization procedure is an128-bit KEY and the outputs areinternal

keys. There are two steps in key initialization. The first step usesKEY and default value
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to generateintermediate internal keys. Then, the second step will use theintermediate

internal keysto createinternal keys.

The purpose of the first step is to allow bit changes inKEY to have influence oninternal

keys. In the first step, the configuration is shown in Figure 3.11. The initial value of each

VLMi for i = 1 to 4 will be given by following equations. First, eachγi is assigned by

KEY [1:64] with

γi[k] =







1, k = i;
KEY [16i + k − 32], 17 ≤ k ≤ 32
0, others,

(3.18)

where1 ≤ k ≤ 32. Then,KEY [65:128] is loaded tox(0)
i by

x
(0)
i [k] =

{

KEY [16i + k + 48], 1 ≤ k ≤ 16;
0, 17 ≤ k ≤ 32.

(3.19)

Finally, KEY also becomes the initial value of noisen(0) by equation defined as fol-

lows.

n(0)[k] = KEY (3.20)

Moveover, in order to reduce the correlation betweenKEY andγi, the least significant

bit of x
(j)
i is fed back to generateγi in the first step of key initialization. We will shiftγi

right one bit per cycle and replace the most significant bit ofγi by the last significant bit of

x
(j)
i where the updating function ofγi is given by

γi = (γi ≫ 1) ⊕ (0x00||x
(j)
i [32] & 0x01) ), (3.21)

wherei = 1 to 4.

The architecture of cascaded VLMs we use in the first stage is shown in Figure 3.12.

Let one output be generated in one cycle with initial values described in Figure 3.11. The
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Figure 3.11: The initial values toV LMi from KEY .

system runs 128 cycles to generatex
(128)
i andγi, wherex(128)

i andγi are called theinterme-

diate internal keysand will be used to generateinternal keys. The reason why 128 cycles

are required is that LFSR will shift one bit to left each cycle and the length ofLx is 128

bits. It needs 128 cycles to shift the first bit to the last bit.

In the first step, value ofn(0) is directly assigned fromKEY and generated byLx

which is linear and predictable. In the second step, we use theintermediate internal keys

to generaten(0) non-linearly and chaotically.

In the second step,x(j)
i is fed toV LMi+1 for i = 1 to 3 without scrambling and the last

x
(j)
4 is fed toV LM0. The configuration is shown in Figure 3.13. Moreover, the first bit of

x
(j)
4 , i.e.,x(j)

4 [1], is fed to a 128-bit register,nreg. With x
(128)
i andγi generated in the first

48



step, the system will run the next 128 cycles to generatenreg which can be defined by

nreg[k − 128] = x
(k)
4 [1], 129 ≤ k ≤ 256. (3.22)

One bit ofnreg is generated one cycle by cascaded VLMs. After that, the value ofnreg

will be used as initial values ofLx, n(0).

Key initialization procedure totally needs 256 cycles. The first 128 cycles is used to

propagate the influence of each bit inKEY to intermediate internal keys. In the second

128 cycles,intermediate internal keysare used to generatenreg (i.e. n(0)) and reduce the

correlation betweenn(0) andKEY . After 256 cycles, the values ofx(256)
i becomex(0)

i .

Then,x(0)
i , γi andn(0) which areinternal keysare ready for MVLM to generateSeq.

3.3.3 Output Function

Thex̄
(j)
m generated by MVLM is a good random source for security application. The output

function is used to further increase the complexity and prevent the whole trajectory from

attacking. With small amount of implementation cost, bit-selection is the most common

method to perform output function where several bits of trajectory are selected to be the

output. At one extreme, only one bit is selected. In this case, reconstructing the trajectory

from the output is impossible but the system is not efficient since only one bit is generated

in one cycle. The number of selected bits can be decided by the secure level that application

needs. For example, if 8-bit output data for application usage is required, the output func-

tion can be defined by selecting the middle 8 bits from a 32-bitx̄
(j)
m [1 : 32], andSeq[1 : 8]

will be equal tox̄(j)
m [13 : 20]. The selection provides a trade-off between output efficiency

and information security.

3.4 Cryptanalysis of MVLM

In this section, we consider some security properties and general attacks against a MVLM.
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Figure 3.12: In the first step of key initialization,γi will be shifted to right one bit per cycle

and the most significant bit ofγi will be replaced byx(j)
i [0].

3.4.1 Key Space

The key length of MVLM is (q × m) bits wherem is the number of coupled VLMs in

MVLM and q is the precision of VLM. In Section 3.3.2, 128-bitKEY is used to generate

internal keyswhich are values of four 32-bitx(0)
i , four 32-bitγi and one 128-bitn0. There

are two properties we want to ensure in key initialization stage when we mapKEY to

internal keys. One is being a one-to-one mapping and the other is to reduce the correlations

between both.

Since segments ofKEY are separated and assigned as initial states of primitive LFSR

50



nreg

V LM1

V LM2

V LM3

V LM4

γ4

x
(j)

1

x
(j)

2

x
(j)

3

x
(j)

4

Lx

γ3

γ2

γ1

Figure 3.13: Using cascaded VLMs to generaten(0) in the second step of key initialization.

which areLx, the LFSR will generate different sequence with differentKEY s. That means

the map is a one-to-one mapping. Moreover, the second property that the correlations

betweenKEY andinternal keysshould be reduced is also achieved becauseinternal keys

is generated after 256 chaotic-system iterations staring withKEY . The key space of the

MVLM is 2128.

3.4.2 Cycle Length

To avoid short length of a single VLM, we use aq-bit noiseni to scramble each output,xi,

periodically. The cycle length ofxi is not predictable but the cycle length ofni depends
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Figure 3.14: The cross-correlations betweenKEY = 0 andKEY = 1.

on the length of LFSR,Lx, which is2q − 1. Since the scrambled output is computed by

xi⊕ni, 2q −1 is the low bound of the cycle length of scrambled output. In a MVLM which

is constructed bym VLMs, the scrambling noise is a (q × m)-bit ni. The minimal cycle

length ofSeq will be 2qm − 1. In Section 3.3, the cycle length of the MVLM coupled by

four 32-bit VLMs will be at least2128 − 1.

3.4.3 Correlation

The cross-correlations between the output sequences generated by differentKEY s is con-

sidered. To check this properties, twoSeqs are generated by selecting all 32-bit of MVLM’s

output described in Section 3.3, i.e.,Seqj = x
(j)
m whenKEY = 0 andKEY = 1. Note

that, only one bit is different between these two inputKEY s. In Figure 3.14, it shows that

the cross-correlations between two sequences generated by twoKEY s are very weak.
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Table 3.1: Parameters for SP800-22.
Block freq. m=128 Serial m=16
Longest run M=10000 Apen m=10
Nonoverlap. m=9 Linear Comp. m=500

Overlap. m=9 Universal L=7,Q=1280

3.4.4 Statistical Analysis

The randomness of the our system is tested by two test suites, SP800-22 developed by

NIST [30] and TestU01 proposed by L’Ecuyer [31]. The SP800-22 test suite has been the

standard reference for randomness testing. Hence, we use SP800-22 as our first randomness

test. Then, to further compare the randomness of the proposed system and other digital

chaotic generator, TestU01 is used.

We summarize the configuration for SP800-22 tests as follows. We letα = 0.01,

T = 120, and others be the values as shown in Table 3.1. For each test, 120 sequences will

be generated by systems with the length of106. For each sequence, each test produces a

P-value, whereP-valueshould be in range, [0.01, 1.00], to pass the test. For each test, the

minimum passing rate of a well random source is 0.9627 out of 120 binary sequences. The

distribution measurement of collectedP-valuesdenoted byU-valueare also reported. IfU-

valueis greater than10−4, the sequence can be considered to be a good random-sequence.

To test by TestU01, three test suites,SmallCrush, Crush, andBigCrushare applied.

Recommended by TestU01,SmallCrushincluding 15 sub-tests is taken as a fast check for

the basic randomness requirement. Next,Crush needs235 output sequences to perform

further 144 tests. Finally,BigCrushis the most stringent statistical testing suite in TestU01.

It needs238 output sequences to perform 160 statistical tests. For each test, ap-value is

calculated. Ifp-value is out of the range, [0.001, 0.9990], the system fails the test. In the

following, we will illustrate the quality of randomness of the proposed system in terms of

statistical testing results.
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1). Randomness improvement by the scrambling function.

The first experiment is conducted to understand the efficiency of the scrambling function

described in Section 3.2. A 32-bit VLM with/without scrambling function is tested by

SP800-22. The initial values ofγ is (0.05079f23)H and polynomials ofLx are chosen as

Lx(x) = x32 +x31 +x30 +x29 +x28 +x22 +1. All 32 bits of system output are selected and

fed to testing package directly. As shown in Table 3.2, without the scrambling function,

theVLM fails some tests because the short output length. On the contrary, with scrambling

function, thescrambled VLMpasses all tests and has uniformly distributedp-values for all

tests in SP800-22 test suite.

2). Quality of randomness versus system precisions.

To understand quality of randomness of a scrambled VLM when system precision is in-

creased, testing results of systems in 16-bit, 20-bit, and 24-bit are shown in Table 3.3. The

results show that when system precision is 16-bit, the scrambled VLM fails 7 tests because

of the non-normally distributedP -values shown in column 3. However, when system pre-

cision is larger than 24, the scrambled VLM passes all tests in SP800-22 and has uniformly

distributedP -values.

3). Comparison with previous work.

We will compare the proposed system to several digitalized chaotic map based genera-

tors with respect to quality of randomness. The first system is Li’s system [12] based on

classical logistic map. To increase the output cycle of digitalized logistic map, Li used

a timing-based reseeding method which disturbed the last five least significant bits of the

output sequence by a fixed pattern when a period of time is reached. The second system is

Robust Hyper-Chaotic System (RHCS) coupled by two robust logistic maps (RLM) [15].
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Table 3.2: The statistical test results of the VLM with/without scrambling function by
SP800-22

VLM scrambled VLM
Tests Yield U-value Yield U-value

Frequency 0.9917 0.04374 0.9917 0.77276
Block freq. 0.9917 0 0.9833 0.99146
Cumulative∗ 0.9917 0.00347 0.9875 0.72303
Runs 0.9917 0.00038 0.9917 0.42203
Longest run 0.9833 0 0.9917 0.39245
Rank 0.9583 0.40709 0.9917 0.07044
FFT 0.9917 0.96429 0.9833 0.29925
Nonoverlap.∗ 0.9821 0.02469 0.9812 0.51330
Overlap. 0.9917 0.01596 0.9917 0.26445
Universal 0.9417 0 0.9583 0.78872
Apen 0.9917 0.00516 0.9833 0.35048
Random e.∗ 0.9966 0.67224 0.9895 0.69997
Random e.v.∗ 0.9918 0.08338 0.9899 0.09493
Serial∗ 0.9750 0.00054 0.9833 0.81194
Linear Comp. 0.9750 0.23276 0.9750 0.58520

Fail Count 2 3 0 0

∗average result of multiple tests is shown.

The third system is Addabbo’s system [14] based on piecewise-linear chaotic map. By uti-

lizing the nonlinear property during truncation, Addabbo’s system extended the period of

Rényi chaotic map with length up to2n − 1. Authors also provided a method to combine

two subsystems to form a system that has maximum global cycle length and well quality

of randomness.

The comparison results are divided into two groups according to bits of output per

cycle. The first group containsclassical logistic map, Li’s andAddabbo’ssystems, where

one bit is generated per cycle. In order to compare ours to systems in group one, the 16th bit

of x̄i is selected as the output ofVLM. The second group containsRHCSwhich generates

24-bit output per cycle. All systems are operated in 32-bit precision or the closet precision
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Table 3.3: The statistical test results of a scrambled VLM in different precisions by SP800-
22

16-bit 20-bit 24-bit
Tests Yield U-value Yield U-value Yield U-value

Frequency 0.9917 0 0.9917 0.00001 0.9917 0.87553
Block freq. 0.9917 0 0.9917 0.07808 0.9833 0.32418
Cumulative∗ 0.9917 0 0.9833 0.00002 0.9917 0.60582
Runs 0.9917 0 0.9833 0.22286 0.9917 0.06688
Longest run 0.9917 0 0.9833 0.11651 0.9750 0.26445
Rank 0.9667 0.15520 0.9917 0.46859 0.9833 0.84858
FFT 0.9667 0.94960 0.9750 0.08217 0.9750 0.88813
Nonoverlap.∗ 0.9827 0.03304 0.9813 0.43792 0.9827 0.50418
Overlap. 0.9917 0 0.9750 0.37813 0.9750 0.46859
Universal 0.9917 0.01791 0.9833 0.45279 0.9833 0.87553
Apen 0.9917 0 0.9917 0.80433 0.9750 0.99820
Random e.∗ 0.9981 0.23156 0.9983 0.31502 0.9834 0.37574
Random e.v.∗ 0.9924 0.06688 0.9919 0.00348 0.9919 0.03978
Serial∗ 0.9917 0.00232 0.9875 0.43128 0.9833 0.83925
Linear Comp. 0.9833 0.33716 0.9917 0.75647 0.9917 0.98503

Fail Count 0 7 0 2 0 0

∗average result of multiple tests is shown.

reported by the literatures. In Table 3.4, test results for scrambledVLM are compared with

those forClassical Logistic Map, Li’s [12] system,RHCS[15] andAddabbo’s[14] system

in terms of the number of failed tests. The test suites and the number of tests are shown in

the first row. The columns,PrecisionandOutput Widthshows the precision of system and

number of bits of one output, respectively.

With the scrambling function,VLM has least number of failure counts both in single

bit output and multiple bits output. It shows that the scrambledVLM has good quality

of randomness. In row 4,Li’s system can improve the randomness when compared with

classical logistic mapshowed in row 3 but still fail theCrushandBigCrushtests. The

results ofAddabbo’ssystem are shown in row 5. Although a singleAddabbo’ssystem has
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Table 3.4: Failure counts in statistical tests for different systems.

Prec- Out SP800 Small- Crush Big-
ision -put -22 Crush (144) Crush

Systems Width (15) (15) (160)

scrambled VLM 32 1 0 0 3 8
classical logistic map 32 1 9 15 140 155
Li’s [12] 32 1 1 15 144 156
Addabbo’s [14] 31 1 2 14 122 141
Addabbo’s [14]∗ 32 1 0 0 3 15

scrambled VLM 32 32 0 0 1 5
RHCS [15]† 32 24 0 0 25 59
MVLM(2) 32 32 0 0 0 0
MVLM(3) 32 32 0 0 0 0

∗A combined 32-bit system by a 17-bit and a 15-bit subsystems.
†A hyper-chaotic system coupled by two 32-bit RLMs.

less implementation cost and passes most tests in SP800-22, it fails lots of tests in TestU01

testing suites. In row 6, the results for combined Addabbo’s system of 17-bit and 15-bit

sub-systems are also included. In row 7,RHCSpasses tests in SP800-22 but fails several

tests in Testu01. Finally, to verify the statistical properties of MVLM, results for MVLMs

coupled by two 32-bit VLMs (labeledMVLM(2)) and three (labeledMVLM(3)) are pre-

sented. As presented in rows 8 and 9, MVLMs can pass all tests in all test suites when the

number of coupled systems is more than 2. This statistical testing result shows that both

scrambled VLM and combined Addabbo’s systems have well statistical properties.

3.4.5 Reconstruction complexity

Since Adddabbo’s system shows the best statistical property among all previous work, we

will compare VLM and Addabbo’s [14] system in reconstruction complexity. Addabbo’s

system is based on Rényi map which is a linear chaotic map. Addabbo’s system is a good
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pseudo random number generator because the system generates output sequence with well

quality of randomness and maximum cycle length at low hardware cost. However, the

system may be not suitable to apply in secure communications directly.

The first reason is a small set of parameter space. With particular parameters, Addabbo’s

system generates output sequence with maximum cycle length. The restricted parameter

space reduce the complexity of cryptoanalysis. The second reason is the linearity of Rényi

map. Since the piecewise-linear map has the same slope everywhere in each subinterval,

the Lyapunov Exponent, topological, metric, and Rényi specific entropies are all equal. On

the contrary, VLM is based on a piecewise and non-linear map which is different from

piecewise-linear map in non-linear senses. These linearity properties can be further ana-

lyzed. For example, the autocorrelation function is calculated for 10,000 sequential states

on trajectories of a 31-bit Addabbo’s system and a 32-bit VLM, respectively. As shown in

Figure 3.15(a), Addabbo’s system has relative high correlations between sequential states

when−25 < Lag < 25. On the contrary, in Figure 3.15(b), VLM has no peak value

exceptLag = 0. The high correlation among sequential states will become a flaw which

can be utilized to reconstruct the system when sequential states are used as system out-

puts directly. Although the correlations can be reduced by avoiding using sequential states

(skipping several states), the system will suffer from short the length of output cycle.

3.5 Hardware Architecture of MVLM

In this section, we show implementation of MVLM in hardware. We describe our designs

in hardware description language (HDL), and then synthesize them by commercial tools.

To be more specific, designs are written in Verilog and synthesised by Synopsys Design

Compiler (Version X-2005.09-SP4) with TSMC.18µm technology library. Area and tim-

ing information is obtained in gate-level netlist. Figure 3.16 shows the block diagram of the

core to compute a singleV LM(γ, x). The block,zero detectorcomputes two functions.
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The first is to setγ[31] = 0 andγ[32] = 0 to satisfy the constraint thatα2γ should be a

multiple of four. The second is to prevent VLM from generating all zero output sequence

by assigningr[30]=1 whenγ = 0. Afterwards, the blocks denoted bytruncation, are used

to implement the modular and truncation operations to keep the product in 32-bit precision.

Since the truncation operation ofVLM drops the most significant 16 bits during multipli-

cation, (i.e., the logic circuit for these bits are no longer needed and can be removed), only

24×32 multiplier is required as compared to32×32 multiplier needed by classical logistic

map. Moreover, a 32-bit subtractor is used to compute(1 − xi).

The components for data-path in a scrambledVLM and other systems are compared in

Table 3.5. In our VLM, two24 × 32 multipliers are required. One comparator is used to

check the inputx andγ are zero or not, and one LFSR is used for the scrambling function.

After synthesizing logic equation to gate-level netlist, the comparison of area cost in terms

of gate counts for a scrambledVLM and other systems are shown in Table 3.6. The area

cost ofVLM is smaller thanclassical logistic mapbecause the multipliers used inVLM is

smaller than that used inclassical logistic map. From [12], the gate-count forLi’s system

is calculated by total gate area divided by a two-input NAND gate which is equal to 9.98

µm2(The same implementation technology as ours). Compared withLi’s system,V LM

is operating at lower frequency, but has smaller area and more complex output sequence.

When compared to a single modified logistic map (RLM) [15], VLM has smaller area cost

and higher throughput because one multiplier is removed as described in Section 3.1. The

hardware cost ofAddabbo’ssystem is not available, but we believed thatAddabbo’ssystem

has the smallest area cost since only one multiplier is required. Compared withAddabbo’s

system,VLM has more complex statistical properties with reasonable area overhead.

Furthermore, for MVLM implementation, Figure 3.17 shows the data-path architecture

of a MVLM with m = 4. The data flow of the system is partitioned into 4 stages separated

by registers denoted by black blocks. Table 3.7 shows the synthesized results including
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Table 3.5: The components for data-path in VLM and other systems.

classical Li’s Addabbo’s RLM
VLM logistic map [12] [14] [15]

multiplier 2(24x32) 2(32x32) 1(32x32) 1(31x31) 3(32x32)
counter 0 0 1(10-bit) 0 0
comparator 1(32-bit) 0 1(10-bit)+1(32-bit) 0 2(32-bit)
LFSR 1(32-bit) 0 0 0 0

Table 3.6: The synthesis result for VLM and other systems.

VLM classical logistic map Li [12]

Technology(µm) .18 .18 .18
Area(#gate-count) 15697 20167 20075
Clock Frequency(Mhz) 100 100 200
Bits/Cycle 32 32 1
Bits/Second(Mbps) 3200 3200 200

Area Ratio 1 1.28 1.27
Throughput Ratio 1 1 0.06

control circuit form = 1 to 4. The area and throughput ofRHCS[15] coupled by two

32-bit RLMs are also reported. When compared toRHCSwhich is coupled by 2 RLMs, a

MVLM with m = 2 has smaller area and higher throughput because of the proposed VLM

reduces the number of multipliers in the data-path. Moveover, MVLM withm = 2 has

better quality of randomness. The experimental results also show that the area of a MVLM

is increased linearly with the number of VLMs. The system can be easily scaled up to

higher degree.

To end this, we know that the statistical test results show that the output sequence gen-

erated byVLM in 32 bits per cycle can pass all tests. Moveover, under 100 Mhz operating

frequency, VLM achieves 3,200 Mbps throughput, which is the best in all systems.
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Table 3.7: The synthesized result of MVLM, and RHCS form = 1 to 4

Number of VLMs(m) 1 2 3 4 RHCS [15]∗

Technology(µm) .18 .18 .18 .18 .18
Area(#gate-count) 15732 31655 46910 62223 37741
Clock Frequency(Mhz) 100 100 100 100 100
Bits/Cycle 32 32 32 32 24
Bits/Seconds(Mbps) 3200 3200 3200 3200 2400
Area Ratio 1 2.01 2.98 3.96 2.39

∗ A system coupled by two 32-bit RLMs [15].

3.6 Summary

A new chaotic map, VLM, has been proposed to have large parameter space without

windows and high throughput in low hardware cost. A 32-bit VLM with the proposed

scrambling method can pass all tests in SP800-22 and the most stringent statistical testing

suite in TestU01. With up to 3,200 Mbps throughput and complex output properties, VLM

is suitable for security applications. We also showed a chaotic cryptographical scheme,

MVLM, constructed by multiple VLMs. In an embodiment, by coupling four 32-bit VLMs,

the MVLM generates the output sequence with a minimal length equal to2128−1 by a 128-

bit external key.
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Figure 3.15: Autocorleation functions for (a) a 31-bit Addabbo’s system, and (b) a 32-bit
VLM.
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Chapter 4

Randomness Enhancement Using
Digitalized Modified-Logistic Map

Pseudo Random Numbers Generators (PRNGs) are widely used in many applications, such

as numerical analysis, integrated circuit testing, computer games and cryptography. The

quality of randomness is usually the main criteria to distinguish different PRNGs. Besides

the quality of randomness, implementation cost and throughput are also important factors

to evaluate the effectiveness of PRNGs in applications such as modern-communication

protocols.

Previous research on PRNGs can be classified into two approaches: linear and nonlin-

ear. While linear approaches have the advantage of high throughput and low implemen-

tation cost, they suffer a low quality of randomness. Nonlinear approaches can be used

to enhance the randomness properties but some of them require more hardware or more

processing time.

Among other nonliner approaches, chaotic map based PRNGs have been proposed [12–

14]. Moreover, in recent years non-quantized chaotic maps have been used for generating

true random numbers [35].

In [12], Li et al. proposed a logistic-map based PRNG with timing-based reseeding

method which replaced the last five least significant bits of the output sequence by a fixed

65



pattern when a period of time is reached. Although Li’s system [12] improves the ran-

domness quality of the output sequence when compared with a classical logistic map,

Li’s system still has some statistical weak points in testing results of SP800-22 [30] and

TestU01 [31].

In [14], Addabboet al. proposed a low-hardware complexity PRNGs based on a

piecewise-linear Rényi map. By utilizing the nonlinear property during truncation, Addabbo’s

system extended the period of Rényi map with the length up to2n − 1. The authors also

provided a method to combine two subsystems to form a system that has the maximum

global cycle length and good quality of randomness. One disadvantage of the system is

that it is not easy to scale the system to high precision. The first reason is that the maxi-

mum cycle length of output sequence depends on values of parameters which are not easy

to find. Second, the quality of randomness is not predictable even when system precision is

increased. For example, in [14], a 24-bit system can pass statistical tests in SP800-22 but a

31-bit system which is the largest precision reported in [14] fails 2 of 15 tests in the same

test suite.

In this chapter, we propose a PRNG which is based on a Digitalized Modified-Logistic

Map (DMLM). Similar to [23] and [15], DMLM is defined inγ ≥ 4 to extend the parame-

ter space. It is shown that the modified logistic map is a pseudo-chaotic map with larger

parameter space as compared with a classical logistic map [23] and is suitable for security

communications [15]. However, high implementation cost renders it an un-suitable PRNG.

We will propose two techniques, constant parameter selection and output sequence scram-

bling, to reduce computation cost without sacrificing the complexity of output sequence.

Moveover, we show that it is easy to extend the precision of DMLM-PRNG.

The statistical test results show that with only one multiplication, our system passes all

cases in SP800-22 [30]. Moreover, it passes most of cases inCrush, one of test suites of

TestU01 [31], while Li’s [12] and single Addabbo’s [14] systems fail almost all cases.
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The rest of this chapter is organized as follows. In Section 4.1, the Digitalized Modified-

Logistic Map based PRNG (DMLM-PRNG) is presented. The parameter selection, scram-

bling method and implementation issues will also be discussed. In Section 4.2, we will

compare DMLM-PRGN to other pseudo-chaotic map based PRNGs with respect to sta-

tistical properties, implementation cost and throughput. Finally, concluding remarks are

given in Section 4.3.

4.1 Modified Logistic Map based PRNG

4.1.1 Digitalized Modified-Logistic Map

We know that a classical logistic map,xi+1 = γxi(1−xi), wherex ∈ [0, 1], presents chaos

when3.57 < γ ≤ 4. To useγ ≥ 4 and to digitalize a logistic map, we define aq-bit

Digitalized Modified Logistic Map (DMLM) by

xi+1 = ⌊[γxi(1 − xi)](mod 1) ⌋q, (4.1)

where the operation,x(mod 1), is used to keepx between [0,1) by dropping the integer part

of x, and⌊x⌋q is a truncation function to preserve the most significantq bits ofx and drop

others. Furthermore, aq-bit binary numberx in [0,1) can be presented byx =
∑

2−jx[j],

wherex[j] is thej-th bit of x. It holds thatxi in Equation (4.1) is aq-bit binary number.

We verify pseudo-chaotic properties of DMLM by numerical experiments including

bifurcation analysisanddiscrete Lyapunov Exponent(dLE) [17].

First, the bifurcation analysis is performed on 1000γs evenly selected in4 ≤ γ ≤ 216

for a 32-bit DMLM. In our experiment, we do not detect any short-periodicwindowsin

1000γs.

Second, thediscrete Lyapunov Exponents(dLEs) [17] for DMLM is calculated, where

the basic expressiondLEsis defined as
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Figure 4.1: The discrete Lyapunov Exponents (dLEs) of a 32-bit DMLM for (a)2.8 < γ <

4, and (b)4 ≤ γ ≤ 216

λF =
1

m

m−1
∑

µ=0

ln
d(F (Mµ+1), F (Mµ))

d(Mµ+1, Mµ)
. (4.2)

M is a finite subsegment of the trajectory in lengthm for a digitalized mapF , and

d(Mµ, Mν) is the distance betweenMµ andMν , whereMµ andMν are inM.

Figure 4.1 showsdLEs for two different ranges ofγ. For each range, 1000γs are

selected evenly. For eachγ, 1000 different initial conditions ofx0 are given to generate

1000 different subsegments, and in each segment, 1000Mµs are computed (i.e.m = 1000).

Then, the averagedLE is reported.

As shown in Figure 4.1(a), when2.8 < γ < 4, dLEs for DMLM are non-positive in

someγs. These non-positivedLEsresult from the use of parameters inwindows. However,

as shown in Figure 4.1(b), whenγ ≥ 4, all dLEsare positive. These numerical results

indicate that DMLM presents pseudo-chaos with large parameter space whenγ ≥ 4.

To apply DMLM in a PRNG, we will further define the value ofγ. The objectives are

twofold: low-cost computation and randomness quality. To reduce the computation cost,

we focus on the subset ofγ whereγ = 2k. In this case, only one multiplication is needed to

compute the orbit because the multiplication ofγ = 2k only requires a shifting operation.
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Next, to increase randomness quality, we start from the point of implementing the mul-

tiplication in finite-precision arithmetic. Because the multiplication is defined in finite pre-

cision, truncation is needed after multiplying two numbers to store a product in the same

number of bits. Letc be the2q-bit result ofxi(1 − xi). Equation (4.1) can be rewritten by

xi+1 = c[k + 1 : k + q] for 0 ≤ k ≤ q. To have a uniformly distributedxi+1, k should

be close toq

2
so that middle bits ofc are preserved after truncation. (The reason will be

explained in the next subsection) Hence, ourq-bit DMLM is reduced to

DMLM(xi) = ⌊[2⌈
q

2
⌉xi(1 − xi)](mod 1) ⌋q. (4.3)

The sequence generated by DMLM is defined byxi+1 = DMLM(xi).

In hardware implementation, multiplying2⌈
q
2
⌉ can be implemented by a shift operation.

Now, DMLM requires only one multiplication. Moreover, in Section 4.1.4, we will show

that DMLM can be implemented at lower cost as compared with a classical logistic map.

We analyze the spectrum of the trajectory generated by a 32-bit DMLM. First, in Fig-

ure 4.2(a) we plot the trajectory with 10,000 outputs. The result shows that the trajectory

is visualized randomly. In Figure 4.2(b), the spectrum analyzed by FFT shows that the

trajectory is broad-band or pseudo-random.

4.1.2 Scrambling Method

It is known that the length of an orbit generated by a digitalized pseudo-chaotic map is far

below the total number of states. For example, letx0=(0.10001000)H, the length of the

orbit generated by a 32-bit DMLM is 21,998 and by a 32-bit classical logistic map (γ=4)

is 29,551. It is obviously insufficient if a long random number sequence is required. As

discussed in Section 3.2, to increase the cycle length, the method to scramble several least

significant bits is useful and widely used [5,12,34].

Similar to [36], we use a LFSR to scramble the output of DMLM. Figure 4.3 shows the

proposed scrambling strategy, whereL is aq-bit primitive LFSR andδ is a one-step delay
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Figure 4.2: (a) Output value plotting, and (b) Spectrum analysis of a trajectory generated
by DMLM with x0=(0.0f5a5a00)H.

block. The noise sequence generated byni+1 = L(ni) is xor-ed withxi+1 to producēxi+1

beforex̄i+1 is fed back to DMLM. The low bound of cycle length of the scrambled system

is analyzed as follows. The low bound of the cycle length of output sequence is specified

by ∆ · (2l − 1), where∆ andl are the scrambling period and the register length of a LFSR,

respectively. As discussed in Section 3.2, to have the maximum output cycle length, we let

∆ = 1 andl = q. Hence, the low bound of cycle length will be2q−1. The overhead of the

scrambling function is aq-bit LFSR.

An experiment is conducted to show that a 32-bit scrambled DMLM has uniformly

distributed outputs by measuring the 1’s probability of the most significant bit ofx̄i. Here,

the length of each sequence is106 bits. Figure 4.4 shows that the 1’s probability of the

output sequence is close to1
2

when the period,∆, is decreasing.

Since the LFSR and DMLM are not functionally independent, the transition behavior
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of the LFSR and DMLM will affect the distribution of̄xi. The transition behavior of the

scrambled system will be analyzed in the next subsection.

4.1.3 Property of the System

In this section, we will show that our constant parameter selection together with the scram-

bling method can produce uniformly distributed outputs, which is an important property of

random number generators.

Our scrambled system can be defined as follows.
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Definition 1. Let x̄i, xi, andni beq-bit binary numbers. LetF andL be a pseudo-chaotic

map and a primitive LFSR, respectively. Letxi+1 = F (x̄i) andni+1 = L(ni). The scram-

bled system is defined byx̄i+1 = D(x̄i, ni) = F (x̄i) ⊕ L(ni).

Notice that in Definition 1,F (x̄i) andL(ni) are functionally dependent and potentially

statistically dependent. AlthoughL(ni) is uniformly distributed,F (x̄i) ⊕ L(ni) is not

always uniformly distributed.

Assume that{x̄i[j]}i>0 is selected as the binary output sequence. The objective is to

prove that a uniformly distributed sequence,{x̄i[j]}i>0, is generated by the given system.

Let the state transition probability matrix ofD : x̄i[j] → x̄i+1[j] be

TD =

[

d0,0 d1,0

d0,1 d1,1

]

, (4.4)

wheredµ,ν = P (x̄i+1[j] = ν|x̄i[j] = µ), for µ, ν = 0, 1. We define the fix-point condition

for the discrete Frobenius-Perron equation for the transitionD as equation,

p = TD × p = [p0 p1]
T , (4.5)

wherepµ = P (x̄i[j] = µ) is the state probability forµ = 0, 1.

For a uniformly distributed sequence ({x̄i[j]}i>0), p in Equation (4.5) should be equal

to [1
2

1
2
]T .

The sufficient conditions for Equation (4.5) withp = [1
2

1
2
]T are discussed in the fol-

lowing properties.

Property 1. If ni[j] and x̄i[j] are statistically independent, then Equation (4.5) holds with

p = [1
2

1
2
]T . Also,TD is a matrix with all entries equal to1

2
.

Proof. Let TF andTN are the state transition probability matrices ofF : x̄i[j] → xi+1[j]

andN : xi+1[j] → x̄i+1[j], respectively.TF andTN can be defined as follows.

TF =

[

f0,0 f1,0

f0,1 f1,1

]

and TN =

[

n0,0 n1,0

n0,1 n1,1

]

, (4.6)
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wherefµ,ν = P (xi+1[j] = ν|x̄i[j] = µ) andnµ,ν = P (x̄i+1[j] = ν|xi+1[j] = µ) for

µ, ν = 0, 1.

We can rewrite Equation (4.5) byp = (TN × TF ) × p. BecauseL(ni) is uniformly

distributed,nµ,ν = 1
2

for µ, ν = 0, 1. Moreover, we know thatf0,0 + f0,1 = 1, and

f1,0 + f1,1 = 1. Thus,TD is a matrix with all entries equal to1
2
. This impliesp = [1

2
1
2
]T is

the stable probability ofTD.

Property 2. If x̄i[j] andxi[j] are statistically independent, thenni[j] andx̄i[j] are statisti-

cally independent. Therefore, the assertion of Property 1 holds.

Proof. From the assumption, we see thatF (x̄i) is a fully disturbing channel which can

remove any statistical dependence betweenx̄i[j] andxi[j]. Furthermore,ni[j] andxi[j] are

statistically independent. Ifxi[j] is uniformly distributed, thenni[j] andx̄i[j] are statisti-

cally independent, which follows from the balanced property of the XOR operation. Thus,

the assertion of Property 1 also holds.

According to Property 1 and Property 2, to have uniformly distributed outputs for the

scrambled system, DMLM (F (x̄i)) should be a fully disturbing channel to remove any

correlation between̄xi[j] andxi[j]. That is, transition probability ofTF should be uniform.

In Equation (4.1),γ is equal to2k. The objective of our constant parameter selection

is to find ak so that the transition probability of Equation (4.1) is close to uniform. Let

x′
i = (1 − xi) andc be the2q-bit result ofxi × x′

i. Equation (4.1) can be rewritten by

xi+1 = c[k + 1 : k + q] for 0 ≤ k ≤ q. Considering a case wherec[2q] is selected as

the output sequence. Sincec[2q] = xi[q] × x′
i[q], c[2q] is equal to 0 whenxi[q] is 0. The

high correlation betweenc[2q] andxi[q] results in a non-uniform transition probability and

makesc[2q] a un-suitable output candidate. Similarly, high correlation exists between the

most significant bits ofc (c[1]) andxi (xi[1]).

On the contrary, middle bits ofc computed by more number of partial products (as
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compared to the most/least significant bits ofc) and carry-in bits depend on each bit ofxi

more uniformly.

An experiment is conducted to understand correlations between bits ofc andxi with

q = 32. The state transition probability matrix going from thet-th bit of xi (xi[t]) to the

j-th bit of c (c[j]) can be defined by a 2-by-2 matrixTF , where the entry atµ-th column

andν-th row shows the probabilityfµ,ν = P (c[j] = ν|xi[t] = µ), whereµ, ν = 0, 1.

The following equation is used to measure the maximum distance betweenfµ,ν and 1
2

for eachTF for different values oft andj.

ρmax = max(|fµ,ν −
1

2
|), (4.7)

whereµ, ν = 0, 1.

The smallerρmax is, the more uniform transition probabilityTF has. Two sets ofρmax

are calculated. The first one isρH
max which is the transition probability from the most

significant bitxi[1] to c[j] for 1 ≤ j ≤ 32. The second one isρL
max which is the transition

probability from the least significant bitxi[32] to c[j] for 31 ≤ j ≤ 63. As shown in

Figure 4.5,ρH
max andρL

max are decreasing whenj is close to 32. It shows thatfµ,ν is close

to 1
2

when middle bits ofc are selected. Please be noticed thatρmaxs smaller than10−6 are

not shown in the graph.

Note that, the above discussion is still empirical because the result shown in Figure 4.5

is not a rigid statistical analysis. However, the discussion could provide some insights into

this special case of pseudo-random number generation.

Hence, to have uniform transition probabilities fromxi to xi+1 for Equation (4.1),k

should be close toq
2

to preserve middle bits of the product after truncation. We know that

our constant parameter selection for DMLM will produce more uniformly transition prob-

abilities. With our constant parameter selection and the scrambling method, the DMLM-

based PRNG, DMLM-PRNG, can generate uniformly distributed outputs.
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Figure 4.5: (a)ρH
max for 1 ≤ j ≤ 32 , and (b)ρL

max for 31 ≤ j ≤ 63

4.1.4 Implementation

We take a 32-bit DMLM-PRNG as an example to show the efficiency of our DMLM-PRNG

implementation. The structure of DMLM-PRNG is shown in Figure 4.6. The DMLM-

PRNG is divided into two modules,DMLMCoreandScraFunc. The first module,DMLM-

Core, generates state value of DMLM. The second module,ScraFunc, scrambles the state

value by a noise generated byLFSR(L). The scrambled state value will be fed back to

DMLMCore. Finally,OUT is the output generator which selects the most significant bit of

x̄i+1 to be the random number sequence.

The current state value of DMLM-PRNG is stored in a 32-bit register,StateREG. A 32-

bit subtractor is used to compute(1 − xi). To compute the next state, only one multiplier

is needed forxi(1 − xi). Operations to multiply216 and truncate the result ofxi(1 − xi)

to 32-bit are implemented by signals selection inTrunOP. Since the truncation operation

drops the most significant 16 bits during multiplication (i.e., the logic circuit for these bits
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Figure 4.6: Architecture of DMLM-PRNG.

are no longer needed and can be removed), the required area is only a24× 32 multiplier as

compared to the area of a32 × 32 multiplier needed by classical logistic map. To compare

the area cost of DMLM used in a 32-bit DMLM-PRNG and a classical logistic map, two

maps are implemented and synthesized with TSMC.18µm technology library. Area and

timing information are obtained in gate-level netlist. The area cost in terms of number of

2-input-NAND gate is shown in Table 4.1. Under the same timing constraint, the area cost

of DMLM is 85.6% of that ofClassical Logistic Mapwith γ=4. The detailed performance

evaluation of DMLM-PRNG will be discussed in the next section.

4.2 Performance Evaluation

In this section, we will compare DMLM-PRGN to other pseudo-chaotic map based PRNGs

with respect to statistical properties, implementation cost and throughput.
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Table 4.1: Comparisons of area and timing for 32-bit DMLM and classical logistic map in
hardware.

Area Data Arrival Time
Maps (2-NAND) (ns)

Classical Logistic Map (γ=4). 10563 5.00
DMLM ( γ=216) 9046 4.83

DMLM/Classical Logistic Map 85.6% 96.6%

Similar to Section 3.4.4, the same tools are used for statistical analysis. To evaluate the

randomness of our system, two test suites, NIST SP800-22 [30] and TestU01 [31] are used.

SP800-22 test suite has been the standard reference for PRNGs. We use SP800-22 as our

first randomness test. Then, to further compare the randomness among DMLM-PRNG and

other PRNGs, a more complex test suite, TestU01, is used for testing.

The configuration for SP800-22 test is as follows.α is equal to 0.01 andT=120. Hence,

120 sequences will be generated by DMLM-PRNG with the length of106 bits. Finally,

generated sequences are fed to the test suite. Each test will produce aP-valuefrom SP800-

22. P-valueshould be in range, [0.01, 1.00], to pass the test. As suggested in SP800-22,

for each test, the minimum pass rate of a pseudo random source is 0.9627 out of 120 binary

sequences. TheU-value is also reported for the distribution measurement of collectedP-

values. If U-valueis greater than10−4, then the sequences can be considered to be a pseudo

random sequence with acceptable quality of randomness. Table 4.2 shows the parameter

configuration used in the following SP800-22 tests.

We first conduct an experiment to understand the quality of randomness of DMLM-

PRNG when system precision is increased. As shown in Table 4.3, systems in 20-bit,

24-bit and 32-bit are tested. When system precision is 20-bit, the proposed PRNG passes

all tests but has 4 failureU-values. However, when the system precision is larger than 24-

bit, DMLM-PRNG passes all tests in SP800-22 and has uniformly distributedP-valuesfor

each test. The experimental results show that the statistical properties of DMLM-PRNG is
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Table 4.2: Parameters for SP800-22.
Block freq. m=128 Serial m=16
Longest run M=10000 Apen m=10
Nonoverlap. m=9 Linear Comp. m=500

Overlap. m=9 Universal L=7,Q=1280

becoming better when we increase the system precision. The LFSR used for scrambling

function is the only parameter needed to change. In this experiment, LFSRs for 20-bit,

24-bit and 32-bit arex20 + x19 + x18 + x15 + x10 + x3 + 1, x24 + x22 + x21 + x19 + x18 +

x16 + x15 + x11 + x9 + x8 + 1, andx32 + x22 + x20 + x14 + x13 + x11 + 1, respectively.

The discussion in Section 4.1.3 has shown that the middle bits ofx̄i are those with the

best randomness properties. We compare the randomness properties of two cases, where

the first bit and the 16th bit of̄xi are respectively selected as output sequences. When the

precision is 20-bit, the failure-count ofU-value is indeed reduced from 4 to 2 for the middle

bit case.

To show the improvement of randomness quality by DMLM-PRNG as compared to

other systems, three testing suites, SP800-22, andSmallCrush, Crushin TestU01 [31] are

applied. Recommended by TestU01,SmallCrushincluding 15 sub-tests is taken as a fast

check for the basic randomness requirement. Next,Crush needs235 output sequences to

perform further 144 tests. For each test, aP-valueis calculated. IfP-valueis out of the

range, [0.001, 0.9990], the sequence fails the test.

1). Randomness improvement by scrambling function.

To understand the efficiency of the scrambling function in DMLM, tests with/without

scrambling function are performed. The failure counts of tests in different testing suites

are shown in Table 4.4. Without scrambling function, DMLM fails some tests because the

short output length. On the contrary, with scrambling function, 32-bit DMLM pass all tests

in SP800-22,SmallCrushand almost all tests inCrushtest suites.

2). Comparison with previous work.
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Table 4.3: Testing results of DMLM-PRNG in different precisions by SP800-22.
20-bit 24-bit 32-bit

Tests Yield U-value Yield U-value Yield U-value

Frequency 0.9917 0 0.9917 0.15520 0.9917 0.00619
Block freq. 0.9917 0 0.9750 0.02381 0.9750 0.33716
Cumulative∗ 0.9917 0 0.9791 0.31171 0.9917 0.46264
Runs 0.9833 0 0.9917 0.28730 0.9917 0.12837
Longest run 0.9833 0.09561 0.9833 0.50093 0.9917 0.88813
Rank 0.9833 0.00699 0.9917 0.42203 0.9833 0.46859
FFT 0.9750 0.25355 0.9667 0.50093 0.9750 0.16260
Nonoverlap.∗ 0.9791 0.23426 0.9805 0.48152 0.9816 0.49706
Overlap. 0.9833 0.00095 0.9667 0.98088 0.9917 0.80433
Universal 0.9667 0.01341 0.9833 0.23276 0.9833 0.32418
Apen 0.9833 0.36414 0.9833 0.00887 0.9833 0.48464
Random e.∗ 0.9928 0.41009 0.9834 0.29321 0.9945 0.14739
Random e.v.∗ 0.9968 0.08301 0.9877 0.00788 0.9983 0.00131
Serial∗ 0.9875 0.63531 0.9833 0.39006 0.9833 0.28810
Linear Comp. 0.9917 0.60245 0.9833 0.78872 0.9667 0.00836

Failure Counts 0 4 0 0 0 0
∗average result of multiple tests is shown.

In Table 4.5, test results for 32-bitDMLM-PRNGare compared with those forClassical

Logistic Map, Addabbo’s[14] system, andLi’s [12] system. For Addabbo’s system, the

precision for the experiment is 31-bit because it is the largest precision reported in [14]. In

the last row, the results for combined Addabbo’s system of 17-bit and 15-bit sub-systems

are also included. This table shows that both DMLM-PRNG and combined Addabbo’s

systems have good statistical properties.

3). Adding Scrambling function to other systems.

The total numbers of states in each testing system are different. For example, DMLM-

PRNG has 64-bit (32+32-bit LFSR) states and Li’s has 42-bit (32+10-bit counter) states.

In order to provide each system comparable number of states, the scrambling function is ap-

plied to other systems in the same way it is applied to DMLM-PRNG. In Table 4.6, testing
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Table 4.4: Randomness improvement by scrambling function in terms of failure count in
statistical tests.

Scrambling SP800-22 Small- Crush
Function (15) Crush (144)

System (15)

DMLM
W/O 9 14 139
W/T 0 0 3

Table 4.5: Failure counts in statistical tests for different systems.
Prec- SP800-22 Small- Crush
ision (15) Crush (144)

System (15)

DMLM-PRNG 32 0 0 3
Classical Logistic Map 32 9 15 140
Addabbo’s [14] 31 2 14 122
Li’s [12] 32 1 15 144
Addabbo’s [14](combined) 32 0 0 3

results show thatClassical Logistic MapandLi’s systems still fail lots of tests even when

the number of registers is doubled. Moreover,Li’s system is worse than its non-scrambling

version. Similar toDMLM-PRNG, Addabbo’ssystem can improve the quality of random-

ness by scrambling. The table also shows thatDMLM-PRNGperforms slightly better than

Addabbo’ssystem in terms of failure count. The row labeled Addabbo’s [14](combined)

shows the results of the system which is also a kind of scrambled system combined with

a 15-bit and a 17-bit Addabbo’s systems. It shows that the randomness is the same with

ours system. Nerveless, for the combined system, the system precision (cycle length) is not

easy to extend and also the quality of randomness is not predictable. Moveover, results for

a non-scrambled 64-bit classical logistic map is also reported in the row labeledClassical

Logistic Map (no-scr.). It shows that the quality of randomness can be improved by preci-

sion increase (see a 32-bit version in Table 4.5), but the trajectory of a digitalized logistic

map eventually enters a loop with unknown length. The quality of randomness of a 64-bit

classical logistic map is worse than that of DMLM-PRNG in terms of failure count.
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Table 4.6: Failure counts in statistical tests with scrambling function.
Number of SP800-22 Small- Crush
Registers (15) Crush (144)

System (15)

DMLM-PRNG 32+32 0 0 3
Classical Logistic Map 32+32 8 14 124
Li’s [12] 42+32 12 13 123
Addabbo’s [14] 31+31 0 1 14

Addabbo’s [14](combined) 15+17 0 0 3
Classical Logistic Map (no-scr.) 64 0 0 27

The transition probabilities of Addabbo’s system are close to uniform while those of

classical logistic map and Li’s systems are not. Hence, when the scrambling function is

used, it results in good result for Addabbo’s system but worse statistic properties in classical

logistic map and Li’s systems.

The last experiment is to compare the components with respect to data-path for DMLM-

PRNG and other systems. In order to compare systems in the same process technology, our

system is synthesized with UMC .18µm technology. The timing and area information are

reported with gate-level netlist. As shown in Table 4.7, in a 32-bitDMLM-PRNG, one

24 × 32 multipliers and a 32-bit LFSR are required. From [12], the gate-count forLi’s

system is calculated by total gate area divided by a 2-input-NAND gate which is equal to

9.98µm2. The comparison of area cost in terms of gate counts forDMLM-PRNGand other

systems are shown in the column denoted byArea. The last column,ThroughPut/Area,

shows that the area efficiency ofDMLM-PRNGis 200% of that ofLi’s system.

Compared withLi’s system,DMLM-PRNGhas smaller area and more complex output

sequence with the same throughput. As compared toAddabbo’ssystem,DMLM-PRNGis

easy to scale to large precision with reasonable area overhead.
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Table 4.7: Comparisons of data-path components, area, and throughput.
Multi- Count- LFSRs Area Throu- Throu-
pliers ers ( 2- ghPut ghPut/

PRNGs NAND) (bits/sec) Area

DMLM-PRNG 1(24x32∗) 0 1(32-bit) 9517 180M 0.018
Li [12] 1(32x32) 1(10-bit) 0 20075 200M 0.009
Addabbo [14] 1(31x31) 0 0 N.A. N.A. N.A.
Addabbo [14] 1(15x15),

0 0 N.A. N.A. N.A.
(combined) 1(17x17)

∗multiplier with the same area cost.

4.3 Summary

In this chapter, we have proposed a nonlinear, Digitalized Modified-Logistic Map based

Pseudo Random Number Generator (DMLM-PRNG). With our constant parameter selec-

tion and scrambling method, DMLM-PRNG has output sequence with good randomness

quality at low implementation cost. Statistical test results have shown that the random-

ness quality of DMLM-PRNG is as good as Addabbo’s [14] combined system and better

than Li’s [12] system. Moreover, our system has shown better scalability than Addabbo’s

system.
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Chapter 5

Conclusions

In this dissertation, we have proposed several modified logistic maps for secure commu-

nications and pseudo random number generation. To increase the number of parameter, a

Robust Logistic Map (RLM) is proposed forγ > 4. As compared to a classical logistic

map, the parameter space is large enough for the security applications. Based on RLM,

a Robust Hyper-Chaotic Encryption-Decryption System (RHCS) is proposed for digital

secure-communications. By couplingn RLMs, a RHCS has large parameter space and

high complexity output. Moreover, RHCS is difficult to re-construct. We have shown

that the output sequence of RHCS has good quality of randomness for secure communica-

tions. The example of implementation demonstrates that the proposed multiple-cycle and

pipelined architectures are effective for area and performance optimization, respectively.

Second, we proposed a Variational Logistic Map (VLM) to reduce the computation cost

and improve the quality of randomness of RLM. VLM has large parameter space without

windows. Moreover, it has high throughput with low hardware cost and good quality of

randomness. A 32-bit VLM passed all tests in SP800-22 and the most of tests in the strin-

gent statistical testing suite in TestU01. With up to 3,200 Mbps throughput and complex

output properties, VLM is suitable for high throughput secure communications. Further-

more, we proposed a chaotic cryptographical scheme, MVLM, constructed by multiple

VLMs. In an embodiment using four 32-bit VLMs, the MVLM generates the output se-
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quence with a minimal length equal to2128 − 1 by a 128-bit external key.

Finally, for pseudo random number generation, we have proposed a nonlinear, Digital-

ized Modified-Logistic Map based Pseudo Random Number Generator (DMLM-PRNG).

To reduce the computation cost without reducing the quality of randomness, we proposed

two techniques, constant parameter selection and output scrambling, for DMLM-PRNG.

The properties of the scrambled system indicated that our DMLM-PRNG can generate uni-

formly distributed outputs. Statistical test results have shown that randomness quality of

DMLM-PRNG is as good as Addabbo’s [14] combined system and significantly better than

Li’s [12] system with smaller area cost. Moreover, our PRNG has better scalability than

Addabbo’s system.

5.1 Future Work

In this dissertation, our proposed systems have large parameter space and good quality of

randomness with low computation cost. The proposed scrambling method is suitable for

our systems to increase the output cycle length and the quality of randomness. The further

cryptoanalysis on our system will be conducted.

We also shown the property that the transition probabilities of the chaotic map should

be uniformly distributed to have uniformly distributed outputs for the scrambled system.

Based on the property, we can further analyze the transition behavior of different chaotic

maps and the scrambling function.

Moreover, optimization of the hardware architecture for our system will be studied.
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